精英家教网 > 初中数学 > 题目详情

【题目】如图,长方形ABCD中,点E是边CD的中点,将△ADE沿AE折叠得到△AFE,且点F在长方形ABCD内.将AF延长交边BC于点G.若BG=3CG,则 =(  )

A.B.1C.D.

【答案】B

【解析】

根据中点定义得出DE=CE,再根据折叠的性质得出DE=EFAF=AD,∠AFE=D=90°,从而得出CE=EF,连接EG,利用“HL”证明△ECG≌△EFG,根据全等三角形性质得出CG=FG,设CG=,则BC=4,根据长方形性质得出AD=BC=4,再求出AF=4,最后求出AG=AF+FG=5,最后利用勾股定理求出AB,从而进一步得出答案即可.

如图,连接EG

∵点ECD中点,

DE=EC

根据折叠性质可得:AD=AFDE=EF,∠D=AFE=90°

CE=EF

RtECGRtEFG中,

EG=EGEC=EF

RtECGRtEFGHL),

CG=FG

CG=

BG=3CG=3

BC=4

AF=AD=BC=4.

AG=5.

RtABG中,

,

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】△ ABC中,AB = AC

(1)如图 1,如果∠BAD = 30°ADBC上的高,AD =AE,则∠EDC =

(2)如图 2,如果∠BAD = 40°ADBC上的高,AD = AE,则∠EDC =

(3)思考:通过以上两题,你发现∠BAD∠EDC之间有什么关系?请用式子表示:

(4)如图 3,如果AD不是BC上的高,AD = AE,是否仍有上述关系?如有,请你写出来,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+m与双曲线y=相交于A,B两点,BCx轴,ACy轴,则△ABC面积的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点AAE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为EBED;SAPD+SAPB=1+.其中正确结论的序号是(  )

A. ①②③ B. ①②④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,BAC=90°,AB=AC,ADBC,垂足是D,AE平分BAD,交BC于点E.在ABC外有一点F,使FAAE,FCBC.

(1)求证:BE=CF;

(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:MEBC;DE=DN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,线段长为为线段上两动点,右侧且,则由的路径:的最小值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形中,对角线交于点上点,且上点,上点,且,并与相交于点

求证:

,求的长.(结果用表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市积极开展阳光体育进校园活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目,为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.

(1)请计算最喜欢B项目的人数所占的百分比.

(2)请计算D项所在扇形图中的圆心角的度数.

(3)请把统计图补充完整.

查看答案和解析>>

同步练习册答案