小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.
(1)如图①,M为边AC上一点,则BD、MF的位置关系是 ;
如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是 ;
如图③,M为边AC延长线上一点,则BD、MF的位置关系是 ;
(2)请就图①、图②、或图③中的一种情况,给出证明.
我选图 来证明.
(1)BD∥MF,BD⊥MF,BD⊥MF;(2)证明见解析.
解析试题分析:(1)①根据题意知∠AME+∠ABC=180°,再利用角平分线的性质得∠AMF+∠ABD=90°,而∠AMF+∠AFM=90°,从而∠AFM=∠ABD,即BD∥MF;
②易证∠AME=∠ABC,由MF、BD分别是∠AME、∠ABC的平分线,可知∠AMF=∠ABD.而∠ABD+∠ADB=90°,所以∠AMF+∠ADB=90°,故BD⊥MF;
③方法同(2);
(2)分析同(1).
(1)BD∥MF,BD⊥MF,BD⊥MF;
(2)(1)BD∥MF
理由如下:∵∠A=90°,ME⊥BC,
∴∠ABC+∠AME=360°﹣90°×2=180°,
∵BD平分∠ABC,MF平分∠AME,
∴∠ABD=∠ABC,∠AMF=∠AME,
∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,
又∵∠AFM+∠AMF=90°,
∴∠ABD=∠AFM,
∴BD∥MF;
(2)BD⊥MF.
理由如下:∵∠A=90°,ME⊥BC,
∴∠ABC+∠C=∠AME+∠C=90°,
∴∠ABC=∠AME,
∵BD平分∠ABC,MF平分∠AME,
∴∠ABD=∠AMF,
∵∠ABD+∠ADB=90°,
∴∠AMF+∠ADB=90°,
∴BD⊥MF;
(3)BD⊥MF.
理由如下:∵∠A=90°,ME⊥BC,
∴∠ABC+∠ACB=∠AME+∠ACB=90°,
∴∠ABC=∠AME,
∵BD平分∠ABC,MF平分∠AME,
∴∠ABD=∠AMF,
∵∠AMF+∠F=90°,
∴∠ABD+∠F=90°,
∴BD⊥MF
考点:1.平行线的判定;2.垂直的判定;3.四边形的内角和.
科目:初中数学 来源: 题型:解答题
完成下面的证明.
已知,如图所示,BCE,AFE是直线,
AB∥CD,∠1=∠2,∠3=∠4.
求证:AD∥BE
证明:∵ AB∥CD (已知)
∴ ∠4 =∠ ( )
∵ ∠3 =∠4 (已知)
∴ ∠3 =∠ ( )
∵∠1 =∠2 (已知)
∴∠1+∠CAF =∠2+ ∠CAF ( )
即:∠ =∠ .
∴ ∠3 =∠ ( )
∴ AD∥BE ( )
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在一条数轴上有A、B两点,点A表示数,点B表示数6。点P是该数轴上的一个动点(不与A、B重合)表示数x。点M、N分别是线段AP、BP的中点。
(1)如果点P在线段AB上,则点M表示的数是 , 则点N表示的数是 (用含x 的代数式表示)。并计算线段MN的长。
(2)如果点P在点B右侧,请你计算线段MN的长。
(3)如果点P在点A左侧,则线段MN的长度会改变吗?如果改变,请说明理由;如果不变,请直接写出结果。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等. 如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.
(1) 如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=_____°,∠3=_____°.
(2) 在(1)中m∥n,若∠1=55°,则∠3=______°;若∠1=40°,则∠3=______°.
(3) 由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3=______°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某考察队从营地P处出发,沿北偏东60°前进了3km到达A地,再向正南方向前进3km最后达C地.回答下列问题:
(1)用1cm代表1千米,画出考察队行进路线图;
(2)度量出C地在营地的什么方向上?(精确到1°)
(3)测算出考察队此时离营地实际多远?(精确到0.1千米)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图所示,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE。
(1)若∠AEF=500,求∠EFG的度数。(4分)
(2)判断EG与FG的位置关系,并说明理由。(6分)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com