5£®Èçͼ£¬Æ½ÃæÖ±½Ç×ø±êϵÖУ¬ÁâÐÎOABCµÄ±ßOAÔÚxÖáÕý°ëÖáÉÏ£¬OA=10£¬cos¡ÏCOA=$\frac{3}{5}$£®Ò»¸ö¶¯µãP´ÓµãO³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØÏß¶ÎOA·½ÏòÔ˶¯£¬¹ýµãP×÷PQ¡ÍOA£¬½»ÕÛÏß¶ÎOC-CBÓÚµãQ£¬ÒÔPQΪ±ßÏòÓÒ×÷Õý·½ÐÎPQMN£¬µãNÔÚÉäÏßOAÉÏ£¬µ±Pµãµ½´ïAµãʱ£¬Ô˶¯½áÊø£®ÉèµãPµÄÔ˶¯Ê±¼äΪtÃ루t£¾0£©£®

£¨1£©CµãµÄ×ø±êΪ£¨6£¬8£©£¬µ±t=$\frac{30}{7}$ʱNµãÓëAµãÖØºÏ£»
£¨2£©ÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬ÉèÕý·½ÐÎPQMNÓëÁâÐÎOABCµÄÖØºÏ²¿·ÖÃæ»ýΪS£¬Ö±½Óд³öSÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½ºÍÏàÓ¦µÄ×Ô±äÁ¿tµÄȡֵ·¶Î§£»
£¨3£©Èçͼ2£¬ÔÚÔ˶¯¹ý³ÌÖУ¬¹ýµãOºÍµãBµÄÖ±Ïß½«Õý·½ÐÎPQMN·Ö³ÉÁËÁ½²¿·Ö£¬ÇëÎÊÊÇ·ñ´æÔÚijһʱ¿Ì£¬Ê¹µÃ±»·Ö³ÉµÄÁ½²¿·ÖÖÐÓÐÒ»²¿·ÖµÄÃæ»ýÊÇÁâÐÎÃæ»ýµÄ$\frac{1}{5}$£¿Èô´æÔÚ£¬ÇëÇó³ö¶ÔÓ¦µÄtµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÁâÐεÄÐÔÖʵóöOA=OC£¬ÔÙ¸ù¾ÝÈý½Çº¯ÊýÇó³öµãCµÄ×ø±ê¼´¿É£»
£¨2£©¸ù¾ÝÃæ»ý¹«Ê½Áгöº¯Êý¹ØÏµÊ½£¬×¢Ò⶯µãÔ˶¯Ê±µÄ¼¸ÖÖÇé¿ö£¬µÃ³ö×Ô±äÁ¿µÄȡֵ·¶Î§£»
£¨3£©¸ù¾Ý±»·Ö³ÉµÄÁ½²¿·ÖÖÐÓÐÒ»²¿·ÖµÄÃæ»ýÊÇÁâÐÎÃæ»ýµÄ$\frac{1}{5}$£¬»­³öͼʾ£¬·Ö¼¸ÖÖÇé¿ö½øÐÐÌÖÂÛ½â´ð£®

½â´ð ½â£º£¨1£©¡ßÁâÐÎOABCÖУ¬OA=10£¬
¡àOC=10£¬
¡ßcos¡ÏCOA=$\frac{3}{5}$£¬
¡àµãCµÄ×ø±êΪ£º£¨6£¬8£©£¬
¡ß¶¯µãP´ÓµãO³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØÏß¶ÎOA·½ÏòÔ˶¯£¬
¡ßOA=10£¬
¡àt=$\frac{30}{7}$ʱ£¬NµãÓëAµãÖØºÏ£»
£¨2£©¢Ù$0£¼t¡Ü\frac{30}{7}£¬S=\frac{16}{9}{t^2}$£¬
¢Ú$\frac{30}{7}£¼t¡Ü6£¬S=-\frac{50}{27}{t^2}+\frac{280}{9}t-\frac{200}{3}$£¬
¢Û$6£¼t¡Ü8£¬S=-\frac{2}{3}{t^2}+\frac{8}{3}t-\frac{184}{3}$£¬
¢Ü8£¼t¡Ü10£¬S=104-8t£»
£¨3£©SÁâÐÎ=80£¬Ö±ÏßOB¹ýÔ­µã£¨0£¬0£©£¬Bµã£¨16£¬8£©£¬¹ÊÖ±ÏßOB½âÎöʽΪ$y=\frac{x}{2}$£¬
Ö±ÏßOBÓëPQ¡¢MN·Ö±ð½»ÓÚE¡¢Fµã£¬Èçͼ£º

¢Ùµ±0£¼t¡Ü6£¬$EP=\frac{t}{2}$£¬$EQ=\frac{5t}{6}$£¬$FN=\frac{7t}{6}$£¬$FM=\frac{t}{6}$£¬
Èô${S_{ËıßÐÎQEFN}}=\frac{1}{5}{S_{ÁâÐÎ}}$£¬Ôò$\frac{1}{2}£¨\frac{5t}{6}+\frac{t}{6}£©•\frac{4t}{3}=16$£¬${t_1}=2\sqrt{6}$£¬
Èô${S_{ËıßÐÎEPNF}}=\frac{1}{5}{S_{ÁâÐÎ}}$£¬Ôò$\frac{1}{2}£¨\frac{t}{2}+\frac{7t}{6}£©•\frac{4t}{3}=16$£¬${t_2}=\frac{6}{5}\sqrt{10}$£¬
¢Úµ±6£¼t¡Ü8£¬$EP=\frac{t}{2}$£¬$EQ=8-\frac{t}{2}$£¬$FN=\frac{t}{2}+4$£¬$FM=4-\frac{t}{2}$£¬
Èô${S_{ËıßÐÎQEFN}}=\frac{1}{5}{S_{ÁâÐÎ}}$£¬Ôò$\frac{1}{2}£¨t+4£©•8=16$£¬t=0£¨Éᣩ£¬
Èô${S_{ËıßÐÎEPNF}}=\frac{1}{5}{S_{ÁâÐÎ}}$£¬Ôò$\frac{1}{2}£¨12-t£©•8=16$£¬t3=8£»
¢Û8£¼t¡Ü10£¬²»´æÔÚ·ûºÏÌõ¼þµÄtÖµ£®

µãÆÀ ´ËÌ⿼²éµÄÊǺ¯Êý×ÛºÏÌ⣬ÄѶȱȽϴ󣬹ؼüÊÇÔËÓÃËıßÐεÄÐÔÖʺÍÃæ»ý¹«Ê½½øÐзÖÎö£¬×¢Òâ³öÏֵļ¸ÖÖÇé¿öÌÖÂÛ£¬²»ÄÜ©½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ÆË㣺$\sqrt{125}$+5$\sqrt{\frac{1}{45}}$+$\frac{1}{4}$$\sqrt{3.2}$-3$\sqrt{0.2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚ¡÷ABCÖУ¬DE¡ÎBC£¬Èô$\frac{AD}{BD}=\frac{1}{2}$£¬
£¨1£©DE=4£¬ÇóBC£»
£¨2£©¡÷ABCµÄÃæ»ýΪ18£¬ÇóËıßÐÎDBECµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈçͼÊÇ2012Äê11Ô·ݵÄÈÕÀú£¬ÏÖÓÃÒ»³¤·½ÐÎÔÚÈÕÀúÖÐÈÎÒâ¿ò³ö4¸öÊý£¬ÇëÓÃÒ»¸öµÈʽ±íʾa£¬b£¬c£¬dÖ®¼äµÄ¹ØÏµ£¬ÏÂÁбíʾÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a+d=b+cB£®a+c=b+dC£®a+b=c+dD£®a+d+1=b+c

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AC£¾AB£¬DE£¨µãDÔÚ¡÷ABCµÄÍⲿ£©´¹Ö±Æ½·ÖBC£¬½»BCÓÚµãE£¬Á¬½ÓBD£¬CD£¬AD£¬¹ýµãD×÷DF¡ÍACÓÚµãF£¬ÑÓ³¤BAµ½µãG£¬Ê¹µÃBG=CF£¬Á¬½ÓDG£¬Èô¡ÏDBC-¡ÏGBD=¡ÏBCA£¬ÔòÏÂÁÐ˵·¨Öв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¡ÏBGD=90¡ãB£®ADƽ·Ö¡ÏGACC£®¡ÏGDB=¡ÏFDCD£®¡ÏBDG=90¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖª£¬OA=OB£¬OC=OD£¬¡Ï1=¡Ï2=¡Ï3£¬AC½»OBÓÚM£¬BD½»OCÓÚN£¬ÇóÖ¤£ºOM=ON£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸