【题目】某校一个班的班主任带领该班的“合唱团学生”去旅游,甲旅行社说:“如果教师买张全票,那么学生票可以5折优惠”,乙旅行社说:“包括教师票在内全部按票价的6折优惠”.假设全票票价为240元/张.
(1)若有名学生,请写出甲.乙两个旅行社的费用的代数式.
(2)若有10名学生参加,跟随哪个旅行社省钱?请说明理由.4名学生呢?
【答案】(1)乙旅行社的费用为144(x+1)元,甲旅行社的费用为120x+240(元);(2)当学生人数为10人,甲旅行社省钱;当学生人数为4人,甲,乙旅行社花钱一样多.
【解析】
(1)根据题意可得:甲旅行社的费用为:学生人数×240×50%+教师全票,乙旅行社的费用为:(学生人数+教师1人)×240×60%;
(2)根据(1)中列的代数式把10代入求值即可;再把4代入求值即可.
(1)乙旅行社的费用为:240×60%×(x+1)=144(x+1)元,甲旅行社的费用为:240×50%x+240=120x+240(元);
(2)当学生人数为10人,
乙旅行社的费用为:144×(10+1)=1584(元).
甲旅行社的费用为:120×10+240=1440(元),
∴甲旅行社省钱;
当学生人数为4人,
乙旅行社的费用为:144×(4+1)=720(元).
甲旅行社的费用为:120×4+240=720(元),
∴甲,乙旅行社花钱一样多.
科目:初中数学 来源: 题型:
【题目】如图,在RI△ABC中,∠C=90°,AC=BC=4cm,点P从点A出发沿线段AB以cm/s的速度向点B运动,设运动时间为ts.过点P作PD⊥AB,PD与△ABC的腰相交于点D.
(1)当t=(4-2)s时,求证:△BCD≌△BPD;
(2)当t为何值时,S△APD=3S△BPD,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.
(1)求每辆A,B两种自行车的进价分别是多少?
(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,BC切⊙O于点B,AC交⊙O于点D.
(1)求证:AB2=ADAC;
(2)当点D运动到半圆AB什么位置时,△ABC为等腰直角三角形,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.
(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;
②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.
(1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件.
(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在长方形纸片ABCD中,AB=m,AD=n,将两张边长分别为6和4的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.
(1)在图1中,EF=___,BF=____;(用含m的式子表示)
(2)请用含m、n的式子表示图1,图2中的S1,S2,若m-n=2,请问S2-S1的值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子里装有4个小球,分别标有1,2,3,7四个数字,这些小球除所标数字不同外,其余方面完全相同,甲、乙两人每次同时从袋子中各随机摸出一个小球,记下小球上的数字,并计算它们的和.
(1)请用画树状图或列表的方法,求两数和是8的概率;
(2)甲、乙两人想用这种方法做游戏,他们规定:若两数之和是2的倍数时,甲得3分;若两数之和是3的倍数时,乙得2分;当两数之和是其他数值时,两人均不得分.你认为这个游戏公平吗?请说明理由;若你认为不公平,请你修改得分规则,使游戏公平。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.
(1)证明△COF是等腰三角形,并求出CF的长;
(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com