精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,AB=AC=9,BAC=120°,AD是ABC的中线,AE是ABD的角平分线,DFAB交AE延长线于F,则DF的长为 .

【答案】

【解析】

试题根据等腰三角形三线合一的性质可得到ADBC,BAD=CAD,从而可得到BAD=60°,ADB=90°,再根据角平分线的性质即可得到DAE=EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF的长.

∵△ABC是等腰三角形,D为底边的中点,

ADBC,BAD=CAD,

∵∠BAC=120°,

∴∠BAD=60°,ADB=90°,

AE是BAD的角平分线,

∴∠DAE=EAB=30°.

DFAB,

∴∠F=BAE=30°.

∴∠DAF=F=30°,

AD=DF.

AB=9,B=30°,

AD=

DF=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣ ;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点AAEABAE=BM,连接EC,再过点AANEC,交直线CM、CB于点F、N.

(1)如图1,若点M在线段AB边上时,求∠AFM的度数;

(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,矩形OABC的边OA、OC分别落在x轴、y轴上,O为坐标原点,且OA=8,OC=4,连接AC,将矩形OABC对折,使点A与点C重合,折痕ED与BC交于点D,交OA于点E,连接AD,如图①.
(1)求点D的坐标和AD所在直线的函数关系式;
(2)⊙M的圆心M始终在直线AC上(点A除外),且⊙M始终与x轴相切,如图②.
①求证:⊙M与直线AD相切;
②圆心M在直线AC上运动,在运动过程中,能否与y轴也相切?如果能相切,求出此时⊙M与x轴、y轴和直线AD都相切时的圆心M的坐标;如果不能相切,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.

(1)求甲、乙两种树苗每棵的价格各是多少元?

(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】县内某小区正在紧张建设中,现有大量的沙石需要运输,“建安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.
(1)求“建安”车队载重量为8吨、10吨的卡车各有多少辆?
(2)随着工程的进展,“建安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有(

A、B两地相距60千米;

出发1小时,货车与小汽车相遇;

小汽车的速度是货车速度的2倍;

出发1.5小时,小汽车比货车多行驶了60千米.

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,OEAB于O,若BOD=40°,则不正确的结论是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)画出△ABC和△A1B1C1关于原点O对称,画出△A1B1C1,并写出△A1B1C1的各顶点的坐标;

(2)将△ABC绕着点O按顺时针方向旋转90°得到的△A2B2C2,画出△A2B2C2,并写出△A2B2C2的各顶点的坐标.

查看答案和解析>>

同步练习册答案