精英家教网 > 初中数学 > 题目详情

【题目】ABC三种款式的帽子,EF二种款式的围巾,穿戴时小婷任意选一顶帽子和一条围巾.

1)用合适的方法表示搭配的所有可能性结果.

2)求小婷恰好选中她所喜欢的A款帽子和E款围巾的概率.

【答案】(1)有A.EA.FB.EB.FC.EC.F6种情况;(2).

【解析】试题分析:1)根据题意,使用列举法,可得小明任意选取一件衣服和一条裤子的情况数目,进而按概率的计算公式计算可得答案.

2)由(1)即可求出小婷恰好选中她所喜欢的A款帽子和E款围巾的概率.

试题解析:(1根据题意,小婷任意选取一顶帽子和一条围巾,有A.EA.FB.EB.FC.EC.F6种情况。

2小婷恰好选中她所喜欢的A款帽子和E款围巾的概率=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.

(1)当t为何值时,四边形PODB是平行四边形?

(2)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值;若不存在,请说明理由;

(3)OPD为等腰三角形时,写出点P的坐标(不必写过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AC=BC,∠ACB=90°AE平分∠BACBCEBDAEDDMACAC延长线于M,连接CD,下列四个结论:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB-BC=2MC,其中正确的有( )个.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰ABC中,AB=AC,∠BAC=120°ADBCD,点PBA延长线上一点,点O是线段AD上一点,OP=OC,

1)求∠APO+DCO的度数;

2)求证:AC=AO+AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CFCE交AB的延长线于点F,EF交BC于点G.

(1)求证:CDE≌△CBF;

(2)当DE=时,求CG的长;

(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解甲、乙两家快递公司比较合适,甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.

(1)当x>1时,请分別直接写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;

(2)在(1)的条件下,小明选择哪家快递公司更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=2∠DAB=60°,EAD边的中点,点MAB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MDAN.

1)求证:四边形AMDN是平行四边形;

2)填空:AM的值为 时,四边形AMDN是矩形;AM的值为 时,四边形AMDN是菱形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.

(1)求证:CD为⊙O的切线;

(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一个正方形甲和两个正方形乙分别沿着图中虚线川剪刀剪成4个完全相等的长方形和一个正方形(如图1),已知正方形甲中剪出的小正方形面积是1,正方形乙中剪出的小正方形面积是4,现将剪得的12个长方形摆成如图2正方形(不重叠无缝隙).则正方形的面积是()

A.9B.16C.25D.36

查看答案和解析>>

同步练习册答案