【题目】如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE∶CD=5∶24
(1)求CD的长;
(2)现汛期来临,水面要以每小时4 m的速度上升,则经过多长时间桥洞会刚刚被灌满?
【答案】CD=24m;2小时
【解析】
试题分析:(1)根据直径的长度求出OD=13m,根据垂径定理可得:OE:DE=5:12,根据直角△ODE的勾股定理求出长度;(2)根据(1)求得OE,延长OE角圆与点F,求出EF的长度,然后进行计算.
试题解析:(1)∵直径AB=26m,∴OD=AB=13m,∵OE⊥CD
∴DE=CD,∵OE∶CD=5∶24,∴OE∶ED=5∶12,∴设OE=5x,ED= 12x
∴在Rt△ODE中,解得x=1,∴CD=2DE=2×12×1=24m
(2)由(1)的OE=1×5=5m,延长OE交圆O于点F
∴EF=OF-OE=13-5=8m,∴8÷4=2小时,所以经过2小时桥洞会刚刚被灌满
科目:初中数学 来源: 题型:
【题目】已知直线AC经过点(1,5)和(-1,1)与直线BC :y = -2x -1相交于点C 。
(1)求直线AC的解析式.
(2)求直AC与y轴交点A的坐标及直线BC与y轴交点B的坐标.
(3)求两直线交点C的坐标.
(4)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.
(1)用含有t的代数式表示AM的长为
(2)当t= 秒时,AM+BN=11.
(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若∠C=60°,AC=12,求的长.
(3)若tanC=2,AE=8,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某乡镇为解决抗旱问题,要在一河道上建一座水泵站,分别向河的同一侧两个村A与B供水.以河道上的大桥O为坐标原点,如图,以河道所在的直线为x轴建立直角坐标系。两村的坐标分别为A(2,3),B(12,7).
(1)求出水泵站建在距离大桥O多远的地方,可使所用输水管道最短?
(2)求出水泵站建在距离大桥O多远的地方,可使它到两村的距离相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.
(1)求证:∠ADC=∠ABD;
(2)求证:AD2=AMAB;
(3)若AM=,sin∠ABD=,求线段BN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A B C M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:
(1)图1中,已知线段AB,A(﹣2,0),B(0,3),则线段AO的长为2,BO的长为3,所以线段AB的长为;把Rt△AOB向右平移3个单位,再向上平移2个单位,得到Rt△CDE.
则Rt△CDE的顶点坐标分别为C(1,2),D(3,2),E(3,5);此时线段CD的长为 ,DE的长为 ,所以线段CE的长为 .
(2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB的长AB= (用含a,b,c,d的代数式表示,写出推导过程);
归纳:无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d)时,线段AB的长为AB= .(不必证明)
(3)运用 在图3中,一次函数y=﹣x+3与反比例函数y=的图象交点为A,B.
①求出交点A、B的坐标;
②线段AB的长;
③点P是x轴上动点,求PA+PB的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.
(1)求证:四边形ADCE的是矩形;
(2)若AB=17,BC=16,求四边形ADCE的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com