【题目】如图,矩形中,,,过对角线中点的直线分别交、于点,.
(1)求证:四边形是平行四边形;
(2)当四边形是菱形时,求菱形的面积.
【答案】(1)见解析;(2)20.
【解析】
(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;
(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,根据平行四边形的面积公式即可得到结论.
(1)证明:∵四边形ABCD是矩形,O是BD的中点,
∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
∴∠OBE=∠ODF,
在△BOE和△DOF中,
,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)解:当四边形BEDF是菱形时,
设BE=x,则DE=x,AE=8-x.
在Rt△ADE中,DE2=AD2+AE2,
在中,
,,
解得:,即BE=5,
.
科目:初中数学 来源: 题型:
【题目】某单位宿舍用电规定如下:如果每户一个月的用电量不超过度,那么这个月只需要交10元电费,若超过度,则这个月除了要交10元电费外,超过的部分还要按元交费,下表是某户5月份和6月份的用电和交费情况,求的值.
月份 | 用电量(度) | 交电费总数(元) |
5 | 80 | 25 |
6 | 45 | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
甲 | 乙 | |
进价(元/部) | 4000 | 2500 |
售价(元/部) | 4300 | 3000 |
该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价﹣进价)×销售量)
(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?
(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中:正确的个数有( )
①如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根;
②如果ac<0,方程M、N都有两个不相等的实数根;
③如果2是方程M的一个根,那么是方程N的一个根;
④如果方程M和方程N有一个相同的根,那么这个根必是x=1.
A.4个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道:任何有理数的平方都是一个非负数,即对于任何有理数a,都有a2≥0成立,所以,当a=0时,a2有最小值0.
(应用):(1)代数式(x-1)2有最小值时,x=___1;
(2)代数式m2+3的最小值是____3;
(探究):求代数式n2+4n+9的最小值,小明是这样做的:
n2+4n+9
=n2+4n+4+5
=(n+2)2+5
∴当n=-2时,代数式n2+4n+9有最小值,最小值为5.
请你参照小明的方法,求代数式a2-6a-3的最小值,并求此时a的值.
(拓展):(3)代数式m2+n2-8m+2n+17=0,求m+n的值.
(4)若y=-4t2+12t+6,直接写出y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC为等腰直角三角形,∠ACB=90°,点A在直线DE上,过C点作CF⊥DE于F,过B点作BG⊥DE于G.
(1)发现问题:如图1,当B、C两点均在直线DE上方时,线段AG、BG和CF存在的数量关系是 .
(2)类比探究:当△ABC绕点A顺时针旋转至图2的位置时,线段AG、BG和CF之间的数量关系是否会发生变化?如果不变,请说明理由;如果变化,请写出你的猜想,并给予证明;
(3)拓展延伸:当△ABC绕点A顺时针旋转至图3的位置时,若CF=1,AG=2,请直接写出△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.
(1)求抛物线的解析式;
(2)点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(3)连接AD并延长,过抛物线上一点Q(Q不与A重合)作QN⊥x轴,垂足为N,与射线交于点M,使得QM=3MN,若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(2,0).OC=3OB.
(1)求抛物线的解析式;
(2)若点P是线段AC下方抛物线上的动点,求三角形PAC面积的最大值.
(3)在(2)的条件下,△PAC的面积为S,其中S为整数的点P作“好点”,则存在多个“好点”,则所有“好点”的个数为
(4)在(2)的条件下,以PA为边向直线AC右上侧作正方形APHG,随着点P的运动,正方形的大小、位置也随之改变,当顶点H或G恰好落在y轴上时,直接写出对应的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com