精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED

证明:∵BE=FC

∴BE+EF=FC+EF____________________________

即:___________

∵AB∥CD

∴∠B=∠C_________________________

在△ABF和△DCE中,

∠A=∠D, ∠B=∠C, BF=CE

∴△ABF≌△DCE________

∴∠AFB=∠DEC_________________________________

∴AF∥ED__________________________________

【答案】等式的性质BF=CE两直线平行内错角相等AAS全等三角形对应角相等内错角相等两直线平行

【解析】

BECF,利用等式的性质得到BFCE ,再由ABDC平行得到两对内错角相等利用AAS得到△ABF与△DCE全等利用全等三角形的对应角相等得到一对内错角相等利用内错角相等两直线平行即可得证.

证明:∵BE=FC

∴BE+EF=FC+EF( 等式的性质 

即: BF=CE 

∵AB∥CD

∴∠B=∠C( 两直线平行内错角相等 

∠A=∠D

∠B=∠C

在△ABF和△DCE中,有

BF=CE

∴△ABF≌△DCE( AAS 

∴∠AFB=∠DEC( 全等三角形对应角相等 

∴AF∥ED( 内错角相等两直线平行 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分ABCPBD上一点,过点PPM^ADPN^CD,垂足分别为MN

1)求证:ADB=CDB

2)若ADC=90°,求证:四边形MPND是正方形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知:在△ABC中,∠CAB=2α,且0°<α<30°,AP平分∠CAB.

(1)如图,若α=21°,ABC=32°,且APBC于点P,试探究线段AB、ACPB之间的数量关系,并对你的结论加以证明;

(2)如图,若∠ABC=60°-α,点P在△ABC的内部,且使∠CBP=30°,直接写出∠APC的度数________(用含α的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示在四边形ABCDA为直角,AB=16,BC=25,CD=15,AD=12,

(1)试说明BDCD

(2)求四边形ABCD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=RtAB=5cmBC=3cm,若动点P从点C开始,按CABC的路径运动,且速度为每秒1cm,设出发的时间为t秒.

1)出发2秒后,求△ABP的周长.

2)问t满足什么条件时,△BCP为直角三角形?

3)另有一点Q,从点C开始,按CBAC的路径运动,且速度为每秒2cm,若PQ两点同时出发,当PQ中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知RtABCRtADE,其中∠ACB=AED=90°.

(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;

(2)改变ADE的位置,使DEBC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EFDE之间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面积.

(2)若每种植1平方米草皮需要200元,问总共需投入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是(
A.( ,3)、(﹣ ,4)
B.( ,3)、(﹣ ,4)??
C.( )、(﹣ ,4)
D.( )、(﹣ ,4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.

查看答案和解析>>

同步练习册答案