【题目】如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED
证明:∵BE=FC
∴BE+EF=FC+EF(____________________________)
即:___________
∵AB∥CD
∴∠B=∠C(_________________________)
在△ABF和△DCE中,
∠A=∠D, ∠B=∠C, BF=CE
∴△ABF≌△DCE(________)
∴∠AFB=∠DEC(_________________________________)
∴AF∥ED(__________________________________)
【答案】等式的性质BF=CE两直线平行内错角相等AAS全等三角形对应角相等内错角相等两直线平行
【解析】
由BE= CF,利用等式的性质得到BF= CE ,再由AB与DC平行得到两对内错角相等,利用AAS得到△ABF与△DCE全等,利用全等三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行即可得证.
证明:∵BE=FC
∴BE+EF=FC+EF( 等式的性质 )
即: BF=CE
∵AB∥CD
∴∠B=∠C( 两直线平行内错角相等 )
∠A=∠D
∠B=∠C
在△ABF和△DCE中,有
BF=CE
∴△ABF≌△DCE( AAS )
∴∠AFB=∠DEC( 全等三角形对应角相等 )
∴AF∥ED( 内错角相等两直线平行 )
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分ABC,P是BD上一点,过点P作PM^AD,PN^CD,垂足分别为M、N。
(1)求证:ADB=CDB;
(2)若ADC=90°,求证:四边形MPND是正方形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知:在△ABC中,∠CAB=2α,且0°<α<30°,AP平分∠CAB.
(1)如图,若α=21°,∠ABC=32°,且AP交BC于点P,试探究线段AB、AC与PB之间的数量关系,并对你的结论加以证明;
(2)如图,若∠ABC=60°-α,点P在△ABC的内部,且使∠CBP=30°,直接写出∠APC的度数________(用含α的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在四边形ABCD中,∠A为直角,AB=16,BC=25,CD=15,AD=12,
(1)试说明BD⊥CD
(2)求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t满足什么条件时,△BCP为直角三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.
(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;
(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面积.
(2)若每种植1平方米草皮需要200元,问总共需投入多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是( )
A.( ,3)、(﹣ ,4)
B.( ,3)、(﹣ ,4)??
C.( , )、(﹣ ,4)
D.( , )、(﹣ ,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com