精英家教网 > 初中数学 > 题目详情

【题目】某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

F

上学方式

电动车

私家车

公共交通

自行车

步行

其他

某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图

根据以上信息,回答下列问题:

(1)参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.

(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.

(3)若将ACDE这四类上学方式视为绿色出行,请估计该校每天绿色出行的学生人数.

【答案】(1)45063 36°,图见解析; (3)2460 人.

【解析】

1)根据骑电动车上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择类的人数所占的百分比,即可求出选择类的人数.
2)求出类的百分比,乘以即可求出类对应的扇形圆心角的度数;由总学生数求出选择公共交通的人数,补全统计图即可;
3)由总人数乘以绿色出行的百分比,即可得到结果.

(1) 参与本次问卷调查的学生共有:(人);

选择类的人数有:

故答案为:45063

(2)类所占的百分比为:

类对应的扇形圆心角的度数为:

选择类的人数为:(人).

补全条形统计图为:

(3) 估计该校每天绿色出行的学生人数为3000×1-14%-4%=2460 人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,用正方形是墩垒石梯,下图分别表示垒到一、二阶梯时的情况,那么照这样垒下去

一级 二级

①填出下表中未填的两空,观察规律。

阶梯级数

一级

二级

三级

四级

石墩块数

3

9

②到第n级阶梯时,共用正方体石墩_______________块(用n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB为定点,定直线l//ABPl上一动点.点MN分别为PAPB的中点,对于下列各值:

线段MN的长;

②△PAB的周长;

③△PMN的面积;

直线MNAB之间的距离;

⑤∠APB的大小.

其中会随点P的移动而变化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是射线上一点,过轴于点,以为边在其右侧作正方形,过的双曲线边于点,则的值为  

A. B. C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】b在数轴上的位置如图所示,

1a+b 0 , a-b 0; (填“>”、“=”或“<”)

2) 化简:|a|-|b|+|a-b|

3)在数轴上表示a+ba-b;并把b0a+ba-b按从小到的顺序用“<”连接起来。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)某学校智慧方园数学社团遇到这样一个题目:

如图1,在中,点在线段上,,求的长.

经过社团成员讨论发现,过点,交的延长线于点,通过构造就可以解决问题(如图

请回答:    

(2)请参考以上解决思路,解决问题:

如图3,在四边形中,对角线相交于点,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=6EBC边的中点,FCD边上的一点,且DF=2,若MN分别是线段ADAE上的动点,则MN+MF的最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装店的一次性购进甲、乙两种童衣共100件进行销售,其中甲种童衣的进价为80/件,售价为120/件;乙种童衣的进价为100/件,售价为150/件。设购进甲种童衣的数量为(件),销售完这批童衣的总利润为(元)。

1)请求出之间的函数关系式(不用写出的取值范围);

2)如果购进的甲种童衣的件数不少于乙种童衣件数的3倍,求购进甲种童衣多少件式,这批童衣销售完利润最多?最多可以获利多少元?

查看答案和解析>>

同步练习册答案