精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.
(1)求证:PD是⊙O的切线;
(2)若∠CAB=120°,AB=6,求BC的值.
分析:(1)利用等腰三角形的性质得到∠B=∠C和∠B=∠OPB,则∠OPB=∠C,于是可判断OP∥AC,由于PD⊥AC,所以OP⊥PD,然后根据切线的判定定理可得到PD是⊙O的切线;
(2)由AB为直径得∠APB=90°,根据等腰三角形的性质得BP=CP,所以∠BAP=60°,在RtBAP中,根据含30度的直角三角形三边的关系得AP=
1
2
AB=3,BP=
3
AP=3
3
,所以BC=2BP=6
3
解答:(1)证明:∵AB=AC,
∴∠B=∠C,
∵OP=OB,
∴∠B=∠OPB,
∴∠OPB=∠C,
∴OP∥AC,
∵PD⊥AC,
∴OP⊥PD,
∴PD是⊙O的切线;

(2)解:连结AP,如图,
∵AB为直径,
∴∠APB=90°,
∴BP=CP,
∵∠CAB=120°,
∴∠BAP=60°,
在RtBAP中,AB=6,∠B=30°,
∴AP=
1
2
AB=3,
∴BP=
3
AP=3
3

∴BC=2BP=6
3
点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案