【题目】在Rt△ABC中,∠A=90°,AB=AC=+2,D是边AC上的动点,BD的垂直平分线交BC于点E,连接DE,若△CDE为直角三角形,则BE的长为_____.
【答案】+1或2
【解析】分析: 分两种情况:先根据勾股定理求斜边BC的长;
①当∠EDC=90°时,如图1,设BE=x,则DE=x,根据BC=BE+CE,列方程可得x的值;
②当∠DEC=90°时,如图2,同理可得BE的长,并知此时D与A重合.
详解: 分两种情况:
∵∠A=90°,AB=AC=+2,
∴BC=AB=2+2,
①当∠EDC=90°时,如图1,
设BE=x,则DE=x,
∵∠C=45°,
∴△EDC是等腰直角三角形,
∴EC=x,
∴BC=BE+CE,
即2+2=x+x,x=2,
∴BE=2,
②当∠DEC=90°时,如图2,
设BE=x,则DE=x,
∵∠C=45°,
∴△EDC是等腰直角三角形,
∴EC=x,
2x=2+2,x=+1,
∴BE=+1,(此种情况D与A重合)
综上所述,BE的长为+1或2.
故答案为:+1或2.
点睛: 本题考查了线段垂直平分线的性质、等腰直角三角形的性质和判定、勾股定理,注意分类讨论△CDE为直角三角形时的直角顶点.
科目:初中数学 来源: 题型:
【题目】如图是某种产品展开图,高为3cm.
(1)求这个产品的体积.
(2)请为厂家设计一种包装纸箱,使每箱能装5件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸的厚度不计,纸箱的表面积尽可能小),求此长方体的表面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
数学课上,老师出示了这样一个问题:
如图1,正方形为中,点、在对角线上,且,探究线段、、之间的数量关系,并证明.
某学习小组的同学经过思考,交流了自己的想法:
小明:“通过观察和度量,发现与存在某种数量关系”;
小强:“通过观察和度量,发现图1中线段与相等”;
小伟:“通过构造(如图2),证明三角形全等,进而可以得到线段、、之间的数量关系”.
老师:“此题可以修改为‘正方形中,点在对角线上,延长交于点,在上取一点,连接(如图3).如果给出、的数量关系与、的数量关系,那么可以求出的值”.
请回答:
(1)求证:;
(2)探究线段、、之间的数量关系,并证明;
(3)若,,求的值(用含的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知O为直线AD上一点,OB是∠AOC内部一条射线且满足∠AOB与∠AOC互补,OM、ON分别为∠AOC、∠AOB的平分线.
(1)∠COD与∠AOB相等吗?请说明理由;
(2)若∠AOB=30°,试求∠AOM与∠MON的度数;
(3)若∠MON=55°,试求∠AOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2 ;
(3)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为( )
A. (2,2)B. (2,)C. (,2)D. (+1,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填空,将理由补充完整.
如图,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求证:FG∥BC
证明:∵CF⊥AB,DE⊥AB(已知)
∴∠BED=∠BFC=90°(垂直的定义)
∴ED∥FC ( )
∴∠2=∠3 ( )
∵∠1+∠EDC=180°(已知)
又∵∠2+∠EDC=180°(平角的定义)
∴∠1=∠2 ( )
∴∠1=∠3(等量代换)
∴FG∥BC ( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com