精英家教网 > 初中数学 > 题目详情

【题目】阅读下面的材料:

解方程x4﹣7x2+12=0这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,则x4=y2原方程可化为:y2﹣7y+12=0,解得y1=3,y2=4,当y=3时,x2=3,x=±,当y=4时,x2=4,x=±2.原方程有四个根是:x1=,x2=﹣,x3=2,x4=﹣2,以上方法叫换元法,达到了降次的目的,体现了数学的转化思想,运用上述方法解答下列问题.

(1)解方程:(x2+x)2﹣5(x2+x)+4=0;

(2)已知实数a,b满足(a2+b22﹣3(a2+b2)﹣10=0,试求a2+b2的值.

【答案】见解析

【解析】解:(1)设y=x2+x,则y2﹣5y+4=0,

整理,得

(y﹣1)(y﹣4)=0,

解得y1=1,y2=4,

当x2+x=1即x2+x﹣1=0时,解得:x=

当当x2+x=4即x2+x﹣4=0时,解得:x=

综上所述,原方程的解为x1,2=,x3,4=

(2)设x=a2+b2,则x2﹣3x﹣10=0,

整理,得

(x﹣5)(x+2)=0,

解得y1=5,y2=﹣2(舍去),

故a2+b2=5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把线段BD 绕着点D逆时针旋转α(0α180)度后,如果点B恰好落在RtABC的边上,那么α=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD 中,AB=4AD=a,点PAD上,且AP=2,点E是边AB上的动点,以PE为边作直角∠EPF,射线PFBC于点F,连接EF,给出下列结论:①tanPFE=;②a的最小值为10.则下列说法正确的是( )

A.①②都对B.①②都错C.①对②错D.①错②对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面内有一等腰RtABC,ACB=90°,点A在直线l上.过点CCE1于点E,过点BBFl于点F,测量得CE=3,BF=2,则AF的长为(  )

A. 5 B. 4 C. 8 D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD中,AB8AD6;点E是对角线BD上一动点,连接CE,作EFCEAB边于点F,以CEEF为邻边作矩形CEFG,作其对角线相交于点H

1)如图2,当点F与点B重合时,求CECG的长;

2)如图3,当点EBD中点时,求CECG的长;

3)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想EBG的形状?并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=5BC=7EBC上的动点,将矩形沿直线AE翻折,使点B的对应点B'落在∠ADC的平分线上,过点B'作BFBC于点F,求BEF的周长______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点ECD的中点,将BCE沿BE折叠后得到BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若,则=__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.

学生选修课程统计表

课程

人数

所占百分比

声乐

14

舞蹈

8

书法

16

摄影

合计

根据以上信息,解答下列问题:

1    

2)求出的值并补全条形统计图.

3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.

4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE.

(1)求证:CEAD

(2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

同步练习册答案