【题目】我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:|x﹣y|表示在数轴上数x、y对应点之间的距离;在解题中,我们常常运用绝对值的几何意义.
①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.
②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3或x=﹣1.
③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5 的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根据上面的阅读材料,解答下列问题:
(1)方程|x|=5的解是_______________.
(2)方程|x﹣2|=3的解是_________________.
(3)画出图示,解方程|x﹣3|+|x+2|=9.
【答案】(1)x=5或-5 ;(2)x=5或-1;(3)x=5或-4.
【解析】试题分析:
(1)由于|x|=5表示在数轴上数x与数0对应点之间的距离,所以x=±5;
(2)由于|x-2|=3中,x的值就是数轴上到2的距离为3的点对应的数,显然x=5或-1;
(3)方程|x-3|+|x+2|=9表示数轴上与3和-2的距离之和为9的点对应的x值,在数轴上3和-2的距离为5,满足方程的x的对应点在3的右边或-2的左边,画图即可解答.
试题解析:(1)∵在数轴上与原点距离为5的点对应的数为±5,
∴方程|x|=5的解为x=±5;
(2)∵在方程|x-2|=3中,x的值是数轴上到2的距离为3的点对应的数,
∴方程|x-2|=3的解是x=5或-1;
(3)∵在数轴上3和-2的距离为5,5<9,
∴满足方程|x-3|+|x+2|=9的x的对应点在3的右边或-2的左边.
若x的对应点在3的右边,由图示可知,x=5;
若x的对应点在-2的左边,由图示可知,x=-4,
所以原方程的解是x=5或x=-4.
科目:初中数学 来源: 题型:
【题目】已知点A(3,4),点B(﹣1,1),在x轴上有两动点E、F,且EF=1,线段EF在x轴上平移,当四边形ABEF的周长取得最小值时,点E的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了开展阳光体育运动,让学生每天能锻炼一小时,某学校去体育用品商店购买篮球与足球,篮球每只定价100元,足球每只定价50元.体育用品商店向学校提供两种优惠方案:①买一只篮球送一只足球;②篮球和足球都按定价的80%付款.现学校要到该体育用品商店购买篮球30只,足球x只(x>30).
(1)若该学校按方案①购买,篮球需付款 元,足球需付款 元(用含x的式子表示);
若该学校按方案②购买,篮球需付款 元,足球需付款 元(用含x的式子表示);
(2)若x=40,请通过计算说明按方案①、方案②哪种方案购买较为合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.
(1)若线段AB=a,CE=b,|a﹣15|+(b﹣4.5)2=0,求a,b的值;
(2)如图1,在(1)的条件下,求线段DE的长;
(3)如图2,若AB=15,AD=2BE,求线段CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】东台教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款30000元,已知“……”,设乙学校教师有x人,则可得方程,根据此情景,题中用“……”表示的缺失的条件应补( )
A. 乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%
B. 甲校教师比乙校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%
C. 甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%
D. 乙校教师比甲校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司保安部去商店购买同一品牌的应急灯和手电筒,查看定价后发现,购买一个应急灯和5个手电筒共需50元,购买3个应急灯和2个手电筒共需85元.
(1)求出该品牌应急灯、手电筒的定价分别是多少元?
(2)经商谈,商店给予该公司购买一个该品牌应急灯赠送一个该品牌手电筒的优惠,如果该公司需要手电筒的个数是应急灯个数的2倍还多8个,且该公司购买应急灯和手电筒的总费用不超过670元,那么该公司最多可购买多少个该品牌应急灯?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,AC=BC=4,M为AB的中点.D是射线BC上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.
(1)如图1,当BD=2时,AN等于多少?,NM与AB的位置关系是?
(2)当4<BD<8时,
①依题意补全图2;
②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;
(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com