【题目】如图,在△ABC中,高AD与中线CE相交于点F,AD=CE=6,FD=1,则AB=______.
【答案】2
【解析】分析:过E作EG⊥BC于G,EH⊥AD于H,可以得出EG为AD的中位线,,进而得到∠ECD=30°,由30°角所对直角边等于斜边的一半,得到CF=2FD=2,得出EF的长,再由平行线的性质得到∠FEH=∠FCD=30°,从而得到HF,EH的长,进一步得到AH的长.在Rt△EHA中,由勾股定理得到AE的长,即可得到结论.
详解:过E作EG⊥BC于G,EH⊥AD于H.∵E为AB的中点,∴BE=AE.∵AD⊥BC,∴EG∥AD,∴BE:EA=BG:GD=1:1,∴EG为AD的中位线,,∴EG=AD==EC,∴∠ECD=30°,∴CF=2FD=2,∴EF=EC-FC=6-2=4.∵EG⊥AD,∴EH∥BC,∴∠FEH=∠FCD=30°,∴HF=EF=2,EH=HF=.∵AD=6,DF=1,HF=2,∴AH=6-1-2=3.在Rt△EHA中,AE===,∴AB=2AE=.故答案为:.
科目:初中数学 来源: 题型:
【题目】为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:
请根据以上统计图中的信息解答下列问题.
(1)植树3株的人数为 ;
(2)扇形统计图中植树为1株的扇形圆心角的度数为 ;
(3)该班同学植树株数的中位数是
(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识
判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知D是等边△ABC边AB上的一点,现将△ABC折叠,使点C与D重合,折痕为EF,点E、
F分别在AC和BC上.如图,若AD∶DB=1∶4,则CE∶CF=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将连续的奇数1、3、5、7、9,……排成如下的数表:
(1)十字框中的5个数的和与中间的数23有什么关系?若将十字框上下左右平移,可框住另外5个数,这5个数还有这种规律吗?
(2)设十字框中中间的数为a,用含a的式子表示十字框中的其他四个数;
(3)十字框中的5个数的和能等于2018吗?若能,请写出这5个数;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC的边长为4,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点A1作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;……,按此规律进行下去,点A2020的纵坐标是_______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是张亮、李娜两位同学零花钱全学期各项支出的统计图.根据统计图,下列对两位同学购买书籍支出占全学期总支出的百分比作出的判断中,正确的是( )
A. 张亮的百分比比李娜的百分比大 B. 张娜的百分比比张亮的百分比大
C. 张亮的百分比与李娜的百分比一样大 D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是某校七年级小朋友小敏这学期第一周和第二周做家务事的时间统计表,已知小敏每次在做家务事中洗碗的时间相同,扫地的时间也相同.
每周做家务总时间(分) | 洗碗次数 | 扫地的次数 | |
第一周 | 44 | 2 | 3 |
第二周 | 42 | 1 | 4 |
(1)求小敏每次洗碗的时间和扫地的时间各是多少?
(2)为鼓励小敏做家务,小敏的家长准备洗碗一次付12元,扫地一次付8元,总费用不超过100元。请问小敏如何安排洗碗与扫地的次数,既能够让花费的总时间最少,又能够全部拿到100元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=5,∠DAB=60°,点E是AD边的中点.点M是线段AB上的一个动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形;
②当AM的值为 时,四边形AMDN是菱形。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com