分析 (1)证出△ABD∽△ACB,得出对应角相等即可;
(2)由相似三角形的性质得出对应边成比例求出AD=$\frac{8}{3}$,BD=$\frac{10}{3}$,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出$\widehat{DE}=\widehat{DF}$,即可得出结论.
解答 (1)证明:∵AB是AD与AC的比例中项.
∴$\frac{AB}{AC}=\frac{AD}{AB}$,
又∵∠A=∠A,
∴△ABD∽△ACB,
∴∠ACB=∠ABD;
(2)证明:∵△ABD∽△ACB,
∴$\frac{AD}{AB}=\frac{BD}{BC}=\frac{AB}{AC}$,即$\frac{AD}{4}=\frac{BD}{5}=\frac{4}{6}$,
解得:AD=$\frac{8}{3}$,BD=$\frac{10}{3}$,
∴CD=AC-AD=6-$\frac{8}{3}$=$\frac{10}{3}$,
∴BD=CD,
∴∠DBC=∠ACB,
∵∠ACB=∠ABD,
∴∠ABD=∠BDC,
∵∠EDF=∠A+∠C,∠A+∠C=180°-∠ABC,
∴∠EDF+∠ABC=180°,
∴点B、E、D、F四点共圆,
∴$\widehat{DE}=\widehat{DF}$,
∴DE=DF.
点评 本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com