【题目】如图,将长方形ABCD沿直线EF折叠,使顶点C恰好落在顶点A处,已知AB=4cm,AD=8cm,则折痕EF的长为( )
A.5cmB.cmC.cmD.cm
【答案】B
【解析】
依据翻折的性质可得到AE=EC,设BE=x,则AE=EC=8-x,在Rt△ABE中,依据勾股定理可求得x的值,则可得到BE、AE的长,然后再证明AE=AF=5,从而可求得EH的长,最后在Rt△EFH中,依据勾股定理可求得EF的长.
如图所示:过点F作FH⊥BC,垂足为H.
由翻折的性质可知AE=EC.
设BE=x,则AE=EC=8-x.
在Rt△ABE中,依据勾股定理得:42+x2=(8-x)2,解得:x=3.
∴BE=3,AE=5.
由翻折的性质可知:∠AEF=∠CEF.
∵AF∥BH,
∴∠AFE=∠FEC.
∴∠AFE=∠AEF.
∴AF=AE=5.
∴BH=5.
∴EH=2.
∵HF=AB=4.
∴.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=, AD=4.
(1)求BC的长;
(2)求tan∠DAE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员:月销售件数100件,月总收入2400元;营业员:月销售件数150件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励元.
(1)求、的值.
(2)若某营业员的月总收入不低于3200元,则她当月至少要卖出服装多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂拟建一座平面图形为矩形且面积为200平方米的三级污水处理池(平面图如图ABCD所示).由于地形限制,三级污水处理池的长、宽都不能超过16米.如果池的外围墙建造单价为每米400元,中间两条隔墙建造单价为每米300元,池底建造单价为每平方米80元.(池墙的厚度忽略不计)当三级污水处理池的总造价为47200元时,求池长x.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】越来越多的人在用微信付款、转账.把微信账户里的钱转到银行卡叫做提现,自2016年3月1日起,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%,
(1)小明用自己的微信账户第一次提现金额为1500元,需支付手续费 元.
(2)小丽使用微信至今,用自己的微信账户共提现三次,提现金额和手续费如下:
第一次 | 第二次 | 第三次 | |
提现金额 | a | b | 2a+3b |
手续费/元 | 0 | 0.2 | 3.1 |
求小丽前两次提现的金额分别为多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢。
(1)这个游戏是否公平?请说明理由;
(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店进行店庆活动,决定购进甲、乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.
(1)购进甲乙两种纪念品每件各需要多少元?
(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6300元,同时又不能超过6430元,则该商场共有几种进货方案?
(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).
(1)求a的值;
(2)(﹣2,a)可看成怎样的二元一次方程组的解?
(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com