【题目】如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=, AD=4.
(1)求BC的长;
(2)求tan∠DAE的值.
【答案】(1) (2)
【解析】
试题(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=4;解Rt△ADB,得出AB=6,根据勾股定理求出BD=2,然后根据BC=BD+DC即可求解;
(2)先由三角形的中线的定义求出CE的值,则DE=CE-CD,然后在Rt△ADE中根据正切函数的定义即可求解.
试题解析:(1)在△ABC中,∵AD是BC边上的高,
∴∠ADB=∠ADC=90°.
在△ADC中,∵∠ADC=90°,∠C=45°,AD=4,
∴DC=AD=4.
在△ADB中,∵∠ADB=90°,sinB=,AD=4,
∴AB=
∴BD=,
∴BC=BD+DC=
(2)∵AE是BC边上的中线,
∴CE=BC=,
∴DE=CE-CD=,
∴tan∠DAE=.
考点: 解直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.
(1)判断PM与⊙O的位置关系,并说明理由;
(2)若PC=,求四边形OCDB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有个填写运算符号的游戏:在“□□□”中的每个“口”内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.
(1)计算:
(2)若口请推算“口”内的运算符号.
(3)在“□□□”的“口”内填入运算符号后,使计算所得的数最小,直接写出这个最小的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,一个点从数轴上的原点开始.先向左移动6cm到达A点,再从A点向右移动10cm到达B点,点C是线段AB的中点.
(1)点C表示的数是 ;
(2)若点A以每秒2cm的速度向左移动,同时C、B两点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒,
①运动t秒时,点C表示的数是 (用含有t的代数式表示);
②当t=2秒时,CBAC的值为 .
③试探索:点A、B、C在运动的过程中,线段CB与AC总有怎样的数量关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某水渠的横断面是等腰梯形,已知其斜坡AD的坡度为1:1.2,斜坡BC的坡度为1:0.8,现测得放水前的水面宽EF为3.8米,当水闸放水后,水渠内水面宽GH为6米.则放水后水面上升的高度是( )米.
A. 1.2 B. 1.1 C. 0.8 D. 2.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【 】
A.1 B. C. 2 D.+1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料阅读:若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a2+2ab+2b2=(a+b)2+b2(a、b是正整数),所以a2+2ab+2b2也是“完美数”.
(1)请你写出一个大于20小于30的“完美数”,并判断53是否为“完美数”;
(2)试判断(x2+9y2)·(4y2+x2)(x、y是正整数)是否为“完美数”,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数y= (k>0)的图象上两点A(x1, y1)和B(x2, y2),且x1>x2>0,分别过A、B向x轴作AA1⊥x轴于A1,BB1⊥x轴于B1,则_________ (填“>”“=”或“<”),若=2,则函数解析式为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将长方形ABCD沿直线EF折叠,使顶点C恰好落在顶点A处,已知AB=4cm,AD=8cm,则折痕EF的长为( )
A.5cmB.cmC.cmD.cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com