【题目】如图,抛物线y=ax2+bx+c (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为 (一1,0),其部分图象如图所示,下列结论:
①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤若(﹣ ,y1),( ,y2)是抛物线上两点,则y1<y2 .
其中结论正确的个数是( )
A.4个
B.3个
C.2个
D.1个
【答案】B
【解析】解:①因为抛物线与x轴有两个交点,则△=b2﹣4ac>0,即4ac<b2 , 则命题正确; ②(﹣1,0)关于x=1的对称点是(3,0)则方程ax2+bx+c=0的两个根是x1=﹣1,x2=3正确;
③根据题意得: ,
解得: ,
则3a+c=﹣3+3=0,故命题错误;
④根据图象y>0,则函数图象在x轴的上方,则﹣1<x<3,故命题错误;
⑤(﹣ ,0)关于x=1的对称点是( ,0),
而 > ,
则y1<y2 , 命题正确.
则正确的是:①②⑤.
故选B.
【考点精析】关于本题考查的二次函数图象以及系数a、b、c的关系和抛物线与坐标轴的交点,需要了解二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c);一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积S△MCB .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;
(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD平分∠BAC,∠EAD=∠EDA.
(1)∠EAC与∠B相等吗?为什么?
(2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一天,小明和小智一起玩卡片游戏,他们分别握有三张正面分别标有字母A,B,C,的不透明卡片.游戏约定:每人将各自的卡片背面朝工弄洗均匀,然后随机抽取一张,两张卡片中,如果同为元音或辅音字母,则为平局;如果一个元音字母一个辅音字母,则抽到元音字母者获胜.
(1)请用列表或画树状图的方法列举出所有出现结果的可能性;
(2)求小明获胜的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△OAB中,∠AOB=90°,已知AB= ,AO:BO=1:3,将△OAB绕点O按顺时针方向旋转90°得到△ODC,如图1建立平面直角坐标系.
(1)求A,B,C三点坐标;
(2)若抛物线y=ax2+bx+c(a≠0)经过A,B,C三点(如图2),点P是抛物线的顶点,试判定△PCD的形状,并说明理由:
(3)在(2)的抛物线上,且在第一象限中,是否存在点Q,使S△QCD=S△OCD?若存在,请求点Q的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.
(1)小明一共走了多少米?
(2)这个多边形的内角和是多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y=﹣x+2的图象与x轴、y轴分别交于点A、B,与函数y=kx(k为常数)的图象交于点E,以BE、OE为邻边的平行四边形是菱形.
(1)求k;
(2)过点B作y轴的垂线,交函数y=kx的图象于点C,四边形OACB是矩形吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com