【题目】如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD上的点.且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?
【答案】问题背景:EF=BE+DF;
探索延伸:EF=BE+DF仍然成立,理由见解析;
实际应用:此时两舰艇之间的距离是210海里.
【解析】解:问题背景:EF=BE+DF;
探索延伸:EF=BE+DF仍然成立.
证明如下:如图,延长FD到G,使DG=BE,连接AG,
∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,
在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,
在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,
∵FG=DG+DF=BE+DF,∴EF=BE+DF;
实际应用:如图,连接EF,延长AE、BF相交于点C,
∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,∴∠EAF=∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.
答:此时两舰艇之间的距离是210海里.
科目:初中数学 来源: 题型:
【题目】如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90,点D为AB边上的一点,
(1)试说明:∠EAC=∠B ;
(2)若AD=15,BD=36,求DE的长.
(3)若点D在A、B之间移动,当点D为 时,AC与DE互相平分.
(直接写出答案,不必说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个三角形内有n个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有3个点时,此时有个小三角形;当三角形内有n个点时,此时有个小三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A—B—C—D回到点A,设点P的运动时间为t秒。
(1)当t=3秒时,求△ABP的面积;
(2)当t为何值时,点P与点A的距离为5cm?
(3)当t为何值时(2<t<5),以线段AD、CP、AP的长度为三角形是直角三角形,且AP是斜边。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自从“新冠病毒”爆发以来,胖胖同学每周且每天3次自测体温,结果统计如下表:则这些体温的众数是_____℃.
体温(℃) | 36.1 | 36.2 | 36.3 | 36.4 | 36.5 | 36.6 | 36.7 |
次数 | 2 | 3 | 4 | 6 | 3 | 1 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据网络数据统计,2017年惠阳区现有人口约615000人,615000这个数字用科学记数法表示应为( )
A. 61.5×104 B. 6.15×105 C. 0.615×106 D. 6.15×10﹣5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com