分析 (1)根据BE=CF得到BC=EF,然后利用SSS判定定理证明△ABC≌△DEF即可,
(2)根据全等三角形的性质得到∠ACB=∠DFE,然后由等腰三角形的判定即可得到结论.
解答 证明:(1)∵BE=CF,
∴BF+CF=CE+CF,
∴BC=EF,
在△ABC和△DEF中,
$\left\{\begin{array}{l}{AB=DE}\\{AC=DF}\\{BC=EF}\end{array}\right.$,
∴△ABC≌△DEF;
(2)∵△ABC≌△DEF,
∴∠ACB=∠DFE,
∴GF=GC,
∴△GFC是等腰三角形.
点评 本题考查了全等三角形的判定和性质,等腰三角形的判定,熟练掌握全等三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com