精英家教网 > 初中数学 > 题目详情

【题目】下列算式
=±3;② =9;③26÷23=4;④ =2016;⑤a+a=a2
运算结果正确的概率是(  )
A.
B.
C.
D.

【答案】B
【解析】解:① =3,故此选项错误;
= =9,正确;
③26÷23=23=8,故此选项错误;
=2016,正确;
⑤a+a=2a,故此选项错误,
故运算结果正确的概率是:
故选:B.
【考点精析】利用实数的运算和概率公式对题目进行判断即可得到答案,需要熟知先算乘方、开方,再算乘除,最后算加减,如果有括号,先算括号里面的,若没有括号,在同一级运算中,要从左到右进行运算;一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为(  )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.

(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;
(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)
②是否存在满足条件的点P,使得PC= ?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.

(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.
(2)当BP=2 时,试说明射线CA与⊙P是否相切.
(3)连接PA,若SAPE= SABC , 求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是(  )
A.15.5,15.5
B.15.5,15
C.15,15.5
D.15,15

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班10名学生的校服尺寸与对应人数如表所示:

尺寸(cm)

160

165

170

175

180

学生人数(人)

1

3

2

2

2

则这10名学生校服尺寸的众数和中位数分别为( )
A.165cm,165cm
B.165cm,170cm
C.170cm,165cm
D.170cm,170cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB∥CD,AD∥BC, AB=3,BC=4,将矩形纸片沿BD折叠,使点A落在点E处,设DE与BC相交于点F.

(1)判断△BDF的形状,并说明理由;

(2)求DF的长.

查看答案和解析>>

同步练习册答案