精英家教网 > 初中数学 > 题目详情
4.同位角相等,两直线平行.符号语言:(如图)∵∠1=∠2(已知)∴a∥b(同位角相等,两直线平行)

分析 根据同位角相等,两直线平行进行分析即可.

解答 解:同位角相等,两直线平行.
符号语言:
(如图)∵∠1=∠2(已知),
∴a∥b(同位角相等,两直线平行),
故答案为:同位角;同位角相等,两直线平行.

点评 此题主要考查了平行线的判定,关键是掌握平行线的判定定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G,一个等腰直角三角尺按如图①所示的位置摆放.该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图①中请你通过观察,测量BF与CG的长度,猜想BF与CG满足的数量关系是BF=CG.
(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交直线BC于点D,过点D作DE丄BA于点E,此时请你通过观察、测量DE、DF与CG的长度关系,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想.
(3)当三角尺在(2)的基础上沿AC方向继续平移(点F在射线AC上,且点F与点A、点C不重合)时,直接写出DE、DF与CG之间满足的数量关系,不用说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:?ABCD中,DE⊥AC于E,BF⊥AC于F,M,N分别是DC,AB的中点.求证:四边形MENF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.先阅读下列材料:
化简$\frac{1}{\sqrt{2}+\sqrt{3}}$时,甲、乙两同学的解法分别为:
甲:$\frac{1}{\sqrt{2}+\sqrt{3}}$=$\frac{3-2}{\sqrt{2}+\sqrt{3}}$=$\frac{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}{\sqrt{2}+\sqrt{3}}$=$\sqrt{3}$-$\sqrt{2}$;
乙:$\frac{1}{\sqrt{2}+\sqrt{3}}$=$\frac{1•(\sqrt{2}-\sqrt{3})}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})}$=$\frac{\sqrt{2}-\sqrt{3}}{-1}$=$\sqrt{3}$-$\sqrt{2}$;
下面请解答:
(1)两位同学的解法是否正确?
(2)请用上述两种方法化简:$\frac{2}{\sqrt{5}-\sqrt{3}}$;
(3)计算$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+$\frac{1}{\sqrt{4}+\sqrt{5}}$+…+$\frac{1}{\sqrt{2014}+\sqrt{2015}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,AB为圆O的直径,点C是AB延长线上一点,且BC=OB,CD、CE分别与圆O相切于点D、E,若AD=5,求DE的长?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图所示,直角梯形ABCD中,以腰CD为直径的⊙O1恰与另一腰AB相切,求证:以腰AB为直径的⊙O2也与腰CD相切.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知,如图,在△ABC中,∠B=45°,∠BCA=30°,过点A、B、C三点作⊙O,过点C作⊙O的切线交BA延长线于点D,连接OA交BC于E.
(1)求证:OA∥CD;
(2)求证:△ABE∽△DCA;
(3)若OA=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,直线a,b,c被直线l所截,若量得∠1=∠2=∠3,试说明a∥b∥c.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,AB为⊙O的直径,连接CD,若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为$\frac{4}{3}π-\sqrt{3}$.(结果保留π)

查看答案和解析>>

同步练习册答案