【题目】如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BP=BQ,连结CQ.
(1)观察并猜想AP与CQ之间的大小关系,并说明理由.
(2)若PA=3,PB=4,PC=5,连结PQ,判断△PQC的形状并说明理由.
【答案】
(1)解:AP=CQ.理由如下:
∵∠PBQ=60°,且BQ=BP,
∴△BPQ为等边三角形,
∵∠ABP+∠CBP=60°,∠CBQ+∠CBP=60°,
∴∠CBQ=∠ABP,
在△ABP和△CBQ中,
,
∴△ABP≌△CBQ(SAS),
∴AP=CQ
(2)解:∵等边△ABC和等边△BPQ中,
PB=PQ=4,PA=QC=3,
∵PQ2+CQ2=PC2,
∴△PQC为直角三角形(勾股定理逆定理)
【解析】(1)易证△ABP≌△CBQ,可得AP=CQ;(2)根据PA=CQ,PB=BQ,即可判定△PQC为直角三角形.
【考点精析】解答此题的关键在于理解勾股定理的逆定理的相关知识,掌握如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形.
科目:初中数学 来源: 题型:
【题目】定义:a是不为1的有理数,我们把 称为a的差倒数.
如:2的差倒数是 ,﹣1的差倒数是 = .
已知 ,
(1)a2是a1的差倒数,则a2=
(2)a3是a2的差倒数,则a3=
(3)a4是a3的差倒数,则a4= ,…,依此类推,则a2009=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各命题中,属于假命题的是( )
A. 若a-b=0,则a=b=0 B. 若a-b>0,则a>b
C. 若a-b<0,则a<b D. 若a-b≠0,则a≠b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法错误的是( )
A.数轴上表示﹣2的点与表示+2的点的距离是2
B.数轴上原点表示的数是0
C.所有的有理数都可以用数轴上的点表示出来
D.最大的负整数是﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com