精英家教网 > 初中数学 > 题目详情

【题目】如图,DB∥AC,且DB= AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?

【答案】
(1)证明:∵E是AC中点,

∴EC= AC.

∵DB= AC,

∴DB=EC.

又∵DB∥EC,

∴四边形DBCE是平行四边形.

∴BC=DE


(2)添加AB=BC.

理由:∵DB AE,

∴四边形DBEA是平行四边形.

∵BC=DE,AB=BC,

∴AB=DE.

ADBE是矩形


【解析】(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.
【考点精析】本题主要考查了平行四边形的判定与性质和矩形的判定方法的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点 O 是等边△ABC 内一点,∠AOB105°,∠BOC 等于α,将△BOC 绕点 C 按 顺时针方向旋转 60°得△ADC,连接 OD.

1)求证:△COD 是等边三角形.

2)求∠OAD 的度数.

3)探究:当α为多少度时,△AOD 是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,直线ABy轴于点,交x轴于点B

1)求直线AB的表达式和点B的坐标;

2)直线l垂直平分OBAB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n

①当时,求点P的坐标;

②在①的条件下,以PB为斜边在第一象限作等腰直角,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形纸片中,,点是边上一点,将矩形纸片沿折叠,点落在点处,设相交于点

1)如图1,若点与点重合,则的形状是

2)在(1)的条件下,求的长;

3)如图2,设相交于点,若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,对角线ACBD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是(  )

A. OAOCOBODB. OAOCABCD

C. ABCDOAOCD. ADB=∠CBD,∠BAD=∠BCD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=50°,则当∠BOD=°时,四边形BECD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.
(1)求证:△BCE≌△DCF;
(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.
(1)求证:AD⊥BF;
(2)若BF=BC,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=x+m (m为常数)的图像与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B.

(1)求m的值及抛物线的函数表达式;
(2)若P是抛物线对称轴上一动点,△ACP周长最小时,求出P的坐标;
(3)是否存在抛物在线一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若不存在,请说明理由;
(4)在(2)的条件下过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请直接写出结果,如果不是请说明理由.

查看答案和解析>>

同步练习册答案