精英家教网 > 初中数学 > 题目详情

【题目】某种事物经历了加热,冷却两个联系过程,折线图DEF表示食物的温度y(℃)与时间x(s)之间的函数关系(0≤x≤160),已知线段EF表示的函数关系中,时间每增加1s,食物温度下降0.3℃,根据图象解答下列问题;

(1)当时间为20s、100s时,该食物的温度分别为℃,℃;
(2)求线段DE所表示的y与x之间的函数表达式;
(3)时间是多少时,该食物的温度最高?最高是多少?

【答案】
(1)50,62
(2)解:设直线DE的解析式为y=kx+b,

则有 ,解得

∴y= x+20


(3)解:设直线EF的解析式为y=mx+n,

则有 ,解得

∴y=﹣ x+92,

解得

∴x=40s时,食物的温度最高,最高温度是80°C.


【解析】解:(1)观察图象可知时间为20s、100s时,该食物的温度分别为50°C,6.

所以答案是50,62.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠A=110°,在边AN上取B,C,使AB=BC.点P为边AM上一点,将△APB沿PB折叠,使点A落在角内点E处,连接CE,则∠BPE+∠BCE=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理﹣﹣“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点D为BC的中点,根据“中线长定理”,可得:
AB2+AC2=2AD2+2BD2 . 小明尝试对它进行证明,部分过程如下:
解:过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2
同理可得:AC2=AE2+CE2 , AD2=AE2+DE2
为证明的方便,不妨设BD=CD=x,DE=y,
∴AB2+AC2=AE2+BE2+AE2+CE2=…
(1)请你完成小明剩余的证明过程;
理解运用:

(2)①在△ABC中,点D为BC的中点,AB=6,AC=4,BC=8,则AD=
②如图3,⊙O的半径为6,点A在圆内,且OA=2 ,点B和点C在⊙O上,且∠BAC=90°,点E、F分别为AO、BC的中点,则EF的长为
拓展延伸:

(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5 ,以A(﹣3,4)为直角顶点的△ABC的另两个顶点B,C都在⊙O上,D为BC的中点,求AD长的最大值.
请你利用上面的方法和结论,求出AD长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.

请根据图中提供的信息,解答下面的问题:

(1)此次共调查了 名学生,型统计图中“艺术鉴赏”部分的圆心角是 度.

(2)请把这个条形统计图补充完整.

(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)

关系:①ADBCAB=CD③∠A=C④∠B+C=180°.

已知:在四边形ABCD中,            

求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了增强学生的身体素质,西南大学附中七年级学生在每天晚自习之后进行夜跑.在学期末的体育考试中,七年级的同学们表现出很好的体育素养,并取得了良好的体育成绩.为了了解七年级学生的体育考试情况,小明抽取了部分同学的体育考试成绩进行分析,体育成绩优、良、中、差分别记为并绘制了如下两幅不完整的统计表:

1)本次调查共调查了 名学生,并补全条形统计图;

2)扇形统计图中类所对应的扇形圆心角的度数是 度;

3)若七年级人数为人,请你估计体育成绩优、良的总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1直线分别交于点的角平分线交于点交于点

1)求证:

2)如图2,连接上一动点,平分的大小是否发生变化?若不变,求出其值;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地相距50km,甲于某日骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车从A地出发驶往B地,在这个变化过程中,甲和乙所行驶的路程用变量skm)表示,甲所用的时间用变量t(时)表示,图中折线OPQ和线段MN分别表示甲和乙所行驶的路程s与时间t的变化关系,请根据图象回答:

1)直接写出:甲出发后______小时,乙才开始出发;

2)请分别求出甲出发1小时后的速度和乙的行驶速度?

3)求乙行驶几小时后追上甲,此时两人距B地还有多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AC=BDEFGH分别是ABBCCDDA的中点,且EGFH交于点O.若AC=4,则EG2+FH2=______

查看答案和解析>>

同步练习册答案