【题目】如图,隧道的截面由抛物线和矩形构成,矩形的长是,宽是,拱顶到地面的距离是,若以原点, 所在的直线为轴, 所在的直线为轴,建立平面直角坐标系.
()画出平面直角坐标系,并求出抛物线的函数表达式.
()在抛物线型拱壁, 处安装两盏灯,它们离地面的高度都是,则这两盏灯的水平距离是多少米?
科目:初中数学 来源: 题型:
【题目】如图,三角形ABC在直角坐标系中.
(1)请直接写出点A、C两点的坐标:
(2)三角形ABC的面积是 ;
(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.
(1)求证:FE=FD;
(2)若∠CAD=∠CAB=24°,求∠EDF的度数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】受气候的影响,某超市蔬菜供应紧张,需每天从外地调运蔬菜1000斤.超市决定从甲、乙两大型蔬菜棚调运蔬菜,已知甲蔬菜棚每天最多可调出800斤,乙蔬菜棚每天最多可调运600斤,从两蔬菜棚调运蔬菜到超市的路程和运费如下表:
到超市的路程(千米) | 运费(元/斤·千米) | |
甲蔬菜棚 | 120 | 0.03 |
乙蔬菜棚 | 80 | 0.05 |
(1)若某天调运蔬菜的总运费为3840元,则从甲、乙两蔬菜棚各调运了多少斤蔬菜?
(2)设从甲蔬菜棚调运蔬菜斤,总运费为元,试写出与的函数关系式,怎样安排调运方案才能使每天的总运费最省?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】快递配送员在一直在一条南北走向的街道上送快递,如果规定向北为正,向南为负,某天他从出发点开始所行走的路程记录为(单位:千米):
+10、-3、-5、+4、+6、+5、-3、-6、-4、+10
(1) 在送快递过程中最远距出发点___________千米
(2) 这天送完最后一个快递时,在出发点的什么方向,距离出发点是多少千米?
(3) 如果送完快递后,需立即返回出发点,那么他这天送快递(含返回)共耗油多少升(已知每千米耗油0.2升)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一次函数(为常数)的图象与反比例函数(为常数,且<0)的图象交于A,B两点.
(1) 如图①,当,时,
① A ( , ),B ( , );
②直接写出使成立的的取值范围;
(2) 如图②,将(1)中直线AB向下平移,交反比例函数图像于点C,D,连接OC,AC,若△AOC的面积为8,求的值;
(3) 若A,B两点的横坐标分别为,,且,满足,证明:2m-b=-3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.
∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2=___(___),
∴AB∥EF(___)
∵∠3=___(___)
又∠B=∠3(已知)
∴∠B=___(等量代换)
∴DE∥BC(___)
∴∠C=∠AED(___).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象过点A(0,3)和点B(3,0),且与正比例函数的图象交于点P.
(1)求函数的解析式和点P的坐标.
(2)画出两个函数 的图象,并直接写出当时的取值范围.
(3)若点Q是轴上一点,且△PQB的面积为8,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红红和娜娜按下图所示的规则玩“锤子、剪刀、布”游戏,
游戏规则:若一人出“剪刀”,另一人出“布”,则出“剪刀”者胜;若一人出“锤子”,另一人出“剪刀”,则出“锤子”者胜;若一人出“布”,另一人出“锤子”,则出“布”者胜,若两人出相同的手势,则两人平局.
下列说法中错误的是
A. 红红不是胜就是输,所以红红胜的概率为
B. 红红胜或娜娜胜的概率相等
C. 两人出相同手势的概率为
D. 娜娜胜的概率和两人出相同手势的概率一样
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com