分析 (1)连接OB.先证明∠ABO、∠CBD均为直角,然后依据同角的余角相等证明∠ABD=∠CBO,接下来,结合等腰三角形的性质和平行线的性质进行证明即可;
(2)连接OB,先求得AB的长,然后由平行线分线段成比例定理求得BE的长,最后再△BOE中依据勾股定理可求得OE的长;
(3)根据相似三角形的性质即可得到结论.
解答 解:(1)证明:如图1:连接OB.
∵CD为圆O的直径,
∴∠CBD=∠CBO+∠OBD=90°.
∵AE是圆O的切线,
∴∠ABO=∠ABD+∠OBD=90°.
∴∠ABD=∠CBO.
∵OB=OC,
∴∠C=∠CBO.
∴∠C=∠ABD.
∵OE∥BD,
∴∠E=∠ABD.
∴∠E=∠C;
(2)解:∵⊙O的半径为3,AD=2,
∴AO=5,∴AB=4.
∵BD∥OE,
∴$\frac{AD}{AO}=\frac{AB}{AE}$,即$\frac{2}{5}=\frac{4}{AE}$,
∴AE=10;
(3)∵S△AOE=$\frac{1}{2}$AE•OB=15,
∵∠C=∠E,∠A=∠A,
∴△AOE∽△ABC,
∴$\frac{{S}_{△ABC}}{{S}_{△AOE}}$=($\frac{AC}{AE}$)2=$\frac{16}{25}$,
∴S△ABC=15×$\frac{16}{25}$=$\frac{48}{5}$.
点评 本题主要考查的是切线的性质、圆周角定理的应用、等腰三角形的性质、平行线的性质、平行线分线段成比例定理、勾股定理的应用,求得BE的长是解答本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com