精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AOB的一边OA为平面镜,∠AOB37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,此时∠ODE=∠ADC,且反射光线DC恰好与OB平行,则∠DEB的度数是___

【答案】74°

【解析】

过点DDFAOOB于点F.根据题意知,DF是∠CDE的角平分线,故∠1=3;然后又由两直线CDOB推知内错角∠1=2;最后由三角形的内角和定理求得∠DEB的度数.

过点DDFAOOB于点F.

∵入射角等于反射角,

∴∠1=3

CDOB

∴∠1=2(两直线平行,内错角相等)

∴∠2=3(等量代换)

RtDOF,ODF=90°,AOB=37°

∴∠2=90°37°=53°

∴在DEF,DEB=180°22=74°.

故答案为74°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).

(1)当t=1时,KE=_____,EN=_____

(2)当t为何值时,△APM的面积与△MNE的面积相等?

(3)当点K到达点N时,求出t的值;

(4)当t为何值时,△PKB是直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG.

(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;

(2)若AB=8,AD=4,求四边形DHBG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABC是等腰直角三角形,四边形ADEF是正方形,点DF分别在ABAC边上,此时BD=CFBDCF成立.

(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2BD=CF成立吗?若成立,请证明;若不成立,请说明理由.

(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BDCF于点G.

①求证:BDCF ②当AB=4AD=时,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DBC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AEDAEBC交于点F.

1)填空:∠ADC= 度;

2)当∠C=20°时,判断DEAC的位置关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x+6分别与x轴,y轴交于点BC且与直线yx交于点A,点D是直线OA上的点,当ACD为直角三角形时,则点D的坐标为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某品牌轿车以匀速行驶的耗油情况,进行了试验:该轿车油箱加满后,以的速度匀速行驶,数据记录如下表:

轿车行驶的路程(千米)

0

100

200

300

油箱剩余油量(升)

50

41

32

23

1)上表反映了哪两个变量之间的关系?自变量、因变量各是什么?

2)油箱剩余油量(升)与轿车行驶的路程(千米)之间的关系式是什么?

3)若小明将油箱加满后,驾驶该轿车以的速度匀速从地驶往地,到达地时油箱剩余油量为5升,求两地之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A'B'C'是由ABC经过平移得到的,它们的顶点在平面直角坐标系中的坐标如下表所示:

(1)观察表中各对应点坐标的变化,并填空:

a= , b= ,c= ;

(2)在平面直角坐标系中画出ABC及平移后的A'B'C';(3)A'B'C'的面积是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的个数有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

同步练习册答案