【题目】解答题
(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.
(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.
(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.
【答案】
(1)
解:如图1,作C关于直线AB的对称点C′,
连接C′D交AB于点P.
则点P就是所要求作的点.
理由:在l上取不同于P的点P′,连接CP′、DP′.
∵C和C′关于直线l对称,
∴PC=PC′,P′C=P′C′,
而C′P+DP<C′P′+DP′,
∴PC+DP<CP′+DP′
∴CD+CP+DP<CD+CP′+DP′
即△CDP周长小于△CDP′周长
(2)
解:如图2,作P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,
则点E,F就是所要求作的点.
理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,
∵C和P关于直线OA对称,
∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,
∵PE+EF+PF=CE+EF+DF,PE′+PF′+E′F′=CE′+E′F′+DE′,
∴CE+EF+DF<CE′+E′F′+DF′,′
∴PE+EF+PF<PE′+PF′+E′F′
(3)
解:如图3,作M关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,
则点E,F就是所要求作的点.
理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,
∵C和P关于直线OA对称,
∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,
由(2)得知MN+ME+EF+MF<ME′+E′F′+F′D.
【解析】(1)由于△PCD的周长=PC+CD+PD,而CD是定值,故只需在直线l上找一点P,使PC+PD最小.如果设C关于l的对称点为C′,使PC+PD最小就是使PC′+PD最小;(2)作P关于OA、OB的对称点C、D,连接CD角OA、OB于E、F.此时△PEF周长有最小值;(3)如图3,作M关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,此时使得E、F、M、N,四点组成的四边形的周长最短.
【考点精析】认真审题,首先需要了解轴对称的性质(关于某条直线对称的两个图形是全等形;如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上),还要掌握轴对称-最短路线问题(已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)请直接写出点B关于点A对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公路上一路段的道路维修工程准备对外招标,现有甲、乙两个工程队竞标,竞标资料上显示:甲工程队单独完成此项工程需要10天,乙工程队单独完成此项工程需要15天,但甲工程队每天的工程费用比乙工程队多300元;甲、乙两队合作共需要10200元.工程指挥队决定从甲、乙两个工程队中选一队单独完成,若从节省资金的角度考虑,应选哪个工程队?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校要举办一次演讲比赛,每班只能选一人参加比赛.但八年级一班共有甲、乙两人的演讲水平相不相上下,现要在他们两人中选一人去参加全校的演讲比赛,经班主任与全班同学协商决定用摸小球的游戏来确定谁去参赛(胜者参赛). 游戏规则如下:在两个不透明的盒子中,一个盒子里放着两个红球,一个白球;另一个盒子里放着三个白球,一个红球,从两个盒子中各摸一个球,若摸得的两个球都是红球,甲胜;摸得的两个球都是白球,乙胜,否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.
根据上述规则回答下列问题:
(1)从两个盒子各摸出一个球,一个球为白球,一个球为红球的概率是多少?
(2)该游戏公平吗?请用列表或树状图等方法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=kx和双曲线在第一象限相交于点A(1,2),点B在y轴上,且AB⊥y轴.有一动点P从原点出发沿y轴以每秒1个单位的速度向y轴的正方向运动,运动时间为t秒(t>0),过点P作PD⊥y轴,交直线OA于点C,交双曲线于点D.
(1)求直线y=kx和双曲线的函数关系式;
(2)设四边形CDAB的面积为S,当P在线段OB上运动时(P不与B点重合),求S与t之间的函数关系式;
(3)在图中第一象限的双曲线上是否存在点Q,使以A、B、C、Q四点为顶点的四边形是平行四边形?若存在,请求出此时t的值和Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
(1)点A表示的数为 ,点B表示的数为 ,点C表示的数为 .
(2)用含t的代数式表示P到点A和点C的距离: PA= ,PC= .
(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.
(1)请问每个站点的造价和公共自行车的单价分别是多少万元?
(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:①MN=HC;②MH=(AH﹣HB);③MN=(AC+HB);④HN=(HC+HB),其中正确的是( )
A.①② B.①②④ C.②③④ D.①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com