【题目】如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.
(1)当∠CBD=15°时,求点C′的坐标.
(2)当图1中的直线l经过点A,且k=﹣ 时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.
(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.
【答案】
(1)
解:∵△CBD≌△C′BD,
∴∠CBD=∠C′BD=15°,C′B=CB=2,
∴∠CBC′=30°,
如图1,作C′H⊥BC于H,则C′H=1,HB= ,
∴CH=2﹣ ,
∴点C′的坐标为:(2﹣ ,1)
(2)
解:如图2,∵A(2,0),k=﹣ ,
∴代入直线AF的解析式为:y=﹣ x+b,
∴b= ,
则直线AF的解析式为:y=﹣ x+ ,
∴∠OAF=30°,∠BAF=60°,
∵在点D由C到O的运动过程中,BC′扫过的图形是扇形,
∴当D与O重合时,点C′与A重合,
且BC′扫过的图形与△OAF重合部分是弓形,
当C′在直线y=﹣ x+ 上时,BC′=BC=AB,
∴△ABC′是等边三角形,这时∠ABC′=60°,
∴重叠部分的面积是: ﹣ ×22= π﹣
(3)
解:如图3,设OO′与DE交于点M,则O′M=OM,OO′⊥DE,
若△DO′E与△COO′相似,则△COO′必是Rt△,
在点D由C到O的运动过程中,△COO′中显然只能∠CO′O=90°,
∴CO′∥DE,
∴CD=OD=1,
∴b=1,
连接BE,由轴对称性可知C′D=CD,BC′=BC=BA,
∠BC′E=∠BCD=∠BAE=90°,
在Rt△BAE和Rt△BC′E中
∵ ,
∴Rt△BAE≌Rt△BC′E(HL),
∴AE=C′E,
∴DE=DC′+C′E=DC+AE,
设OE=x,则AE=2﹣x,
∴DE=DC+AE=3﹣x,
由勾股定理得:x2+1=(3﹣x)2,
解得:x=,
∵D(0,1),E( ,0),
∴ k+1=0,
解得:k=﹣ ,
∴存在点D,使△DO′E与△COO′相似,这时k=﹣ ,b=1.
【解析】(1)利用翻折变换的性质得出∠CBD=∠C′BD=15°,C′B=CB=2,进而得出CH的长,进而得出答案;(2)首先求出直线AF的解析式,进而得出当D与O重合时,点C′与A重合,且BC′扫过的图形与△OAF重合部分是弓形,求出即可;(3)根据题意得出△DO′E与△COO′相似,则△COO′必是Rt△,进而得出Rt△BAE≌Rt△BC′E(HL),再利用勾股定理求出EO的长进而得出答案.
【考点精析】通过灵活运用确定一次函数的表达式和勾股定理的概念,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.
(1)直接写出函数y= 图象上的所有“整点”A1 , A2 , A3 , …的坐标;
(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ= ,那么当点P运动一周时,点Q运动的总路程为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设(2y﹣z):(z+2x):y=1:5:2,则(3y﹣z):(2z﹣x):(x+3y)=( )
A.1:5:7
B.3:5:7
C.3:5:8
D.2:5:8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2 ),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).
(1)分别写出点A经1次,2次斜平移后得到的点的坐标.
(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.
①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.
②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数 的图象是由反比例函数 的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.如图,已知反比例函数 的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.
(1)写出点B的坐标,并求a的值;
(2)将函数 的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式 的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:
每月用气量 | 单价(元/m3) |
不超出75m3的部分 | 2.5 |
超出75m3不超出125m3的部分 | a |
超出125m3的部分 | a+0.25 |
(1)若甲用户3月份的用气量为60m3 , 则应缴费元;
(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;
(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com