精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,当三角形直角顶点P坐标为(3,3)时,设一直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,在三角板绕点P旋转的过程中,使得△POA为等腰三角形.请写出所有满足条件的点B的坐标________.

(0,3),(0,0),(0,6-3
分析:由P坐标为(3,3),可得∠AOP=45°,然后分别从OA=PA,OP=PA,OA=OP去分析求解即可求得答案.
解答:解:∵P坐标为(3,3),
∴∠AOP=45°,
①如图1,若OA=PA,则∠AOP=∠OPA=45°,
∴∠OAP=90°,
即PA⊥x轴,
∵∠APB=90°,
∴PB⊥y轴,
∴点B的坐标为:(0,3);
②如图2,若OP=PA,则∠AOP=∠OAP=45°,
∴∠OPA=90°,
∵∠BPA=90°,
∴点B与点O重合,
∴点B的坐标为(0,0);
③如图3,若OA=OP,则∠OPA=∠OAP==67.5°,
过点P作PC⊥y轴于点C,过点B作BD⊥OP于点D,
则PC∥OA,
∴∠OPC=∠AOP=45°,
∵∠APB=90°,
∴∠OPB=∠APB-∠OPA=22.5°,
∴∠OPB=∠CPB=22.5°,
∴BC=BD,
设OB=a,
则BD=BC=3-a,
∵∠BOP=45°,
在Rt△OBD中,BD=OB•sin45°,
即3-a=a,
解得:a=6-3
综上可得:点B的坐标为:(0,3),(0,0),(0,6-3).
故答案为:(0,3),(0,0),(0,6-3).
点评:此题考查了等腰三角形的性质、三角函数的定义以及旋转的性质.此题难度较大,注意掌握方程思想、分类讨论思想以及数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案