【题目】解方程:(1)7(2x–1)–3(4x–1)=4(3x+2)–1;
(2).
【答案】(1)x=﹣1.1;(2)x=4.
【解析】
(1)先去括号再移项即可,注意去括号时,括号前为负号时,括号内每项均要变号,移项也要变号;
(2)方程两边先同时乘以12去分母,再去括号和移项即可.
解:(1)去括号得:14x﹣7﹣12x+3=12x+8﹣1,
移项得:14x﹣12x﹣12x=8﹣1+7﹣3,
合并同类项得:﹣10x=11,
系数化为1得:x=﹣1.1,
(2)方程两边同时乘以12得:4(7x﹣1)﹣6(5x+1)=24﹣3(3x+2),
去括号得:28x﹣4﹣30x﹣6=24﹣9x﹣6,
移项得:28x﹣30x+9x=24﹣6+4+6,
合并同类项得:7x=28,
系数化为1得:x=4.
科目:初中数学 来源: 题型:
【题目】从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x的不等式组 有解,且使关于x的一元一次方程 +1= 的解为负数的概率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-,0),B(0,2),C(-2,2).
(1)当直线l的表达式为y=x时,
①在点A,B,C中,直线l的近距点是 ;
②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;
(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c的顶点为(1,0),且经过点(0,1).
(1)求该抛物线对应的函数的解析式;
(2)将该抛物线向下平移m(m>0)个单位,设得到的抛物线的顶点为A,与x轴的两个交点为B、C,若△ABC为等边三角形.
①求m的值;
②设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使四边形CBDP为菱形?若存在,写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图的数阵是由77个偶数排成:
(1)如图中任意作一个平行四边形框,设左上角的数为x,那么其他3个数从小到大可分别表示为 .
(2)小红说这4个数的和是292,能求出这4个数吗?若存在,请求出这4个数.不存在说明理由.
(3)小明说4个数的和是420,存在这样的数吗?若存在,请求出这4个数,不存在说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)-16-(-1+)÷3×[2-(-4)2]
(2)解方程:-=-1
(3)先化简,再求值:2(x2-2xy)+[2y2-3(x2-2xy+y2)+x2],其中x=1,y=-.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只小球落在数轴上的某点,第一次从向左跳1个单位到,第二次从向右跳2个单位到,第三次从向左跳3个单位到,第四次从向右跳4个单位到,若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点所表示的数是__________;若小球按以上规律跳了2n次时,它落在数轴上的点所表示的数恰好是,则这只小球的初始位置点所表示的数是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了迎接卓园艺术节的召开,现要从七、八年级学生中抽调人参加“校园集体舞”、“广播体操”、“唱红歌”等活动,其中参加“校园集体舞”人数是抽调人数的 还多3人,参加“广播体操”活动人数是抽调人数的 少2人,其余的参加“唱红歌”活动,若抽调的每个学生只参加了一项活动.
(1)求参加“唱红歌”活动的人数.(用含的式子表示)
(2)求参加“广播体操”比参加“校园集体舞”多的人数.(用含的式子表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com