精英家教网 > 初中数学 > 题目详情
如图,△ABC中,D是BC的中点,F是AC边上一点,点G在FD延长线上,且DG=DF,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG∥AC
(2)请你判断BE+CF与EF的大小关系,并说明理由.
分析:(1)首先根据D是BC的中点得到BD=CD,结合DG=DF,∠BDG=∠CDF,证明△BDG≌△CDF,即∠GBD=∠C,结论证明;
(2)根据△BDG≌△CDF得到DG=DF,结合DE⊥DF得到EG=EF,显然有:BE+BG>EG,即可得到BE+CF>EF.
解答:证明:(1)∵D是BC的中点,
∴BD=CD,
在△BDG和△CDF,
BD=CD
∠BDG=∠CDF
DG=DF

∴△BDG≌△CDF(SAS),
∴∠GBD=∠C,BG=CF,
∴BG∥AC;

(2)∵△BDG≌△CDF,
∴DG=DF,
∵DE⊥DF,
∴EG=EF,
显然有:BE+BG>EG,
∵△BDG≌△CDF,
∴BG=CF,
于是:BE+CF>EF.
点评:本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握全等三角形的判定定理,此题难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案