精英家教网 > 初中数学 > 题目详情

【题目】如图,已知数轴上点A表示的数为-3B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.

1)数轴上点B表示的数为______;点P表示的数为______(用含t的代数式表示).

2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,PQ停止运动.设运动时间为t秒.

①当点P与点Q重合时,求t的值,并求出此时点P表示的数.

②当点P是线段AQ的三等分点时,求t的值.

【答案】19 -3+2t;(2)①当t=4时,点P与点Q重合,此时点P表示的数为5;②当t=秒或3秒或6秒或秒时,点P是线段AQ的三等分点.

【解析】

1)根据两点间的距离求解可得;

2)①根据重合前两者的路程和等于AB的长度列方程求解可得;②分点P与点Q重合前和重合后,依据点P是线段AQ的三等分点线段间的数量关系,并据此列出方程求解可得.

解:(1)由题意知,点B表示的数是-3+12=9,点P表示的数是-3+2t

故答案为:9-3+2t

2)①根据题意,得:(1+2t=12

解得:t=4

-3+2t=-3+2×4=5

答:当t=4时,点P与点Q重合,此时点P表示的数为5

PQ重合前:

2AP=PQ时,有2t+4t+t=12,解得t=

AP=2PQ时,有2t+t+t=12,解得t=3

PQ重合后:

AP=2PQ时,有28-t=2t-4),解得t=6

2AP=PQ时,有48-t=t-4,解得t=

综上所述,当t=秒或3秒或6秒或秒时,点P是线段AQ的三等分点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】西宁市教育局在局属各初中学校设立“自主学习日”,规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践;F.其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:
(1)此次抽查的样本容量为 , 请补全条形统计图
(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?
(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本学期开学前夕,苏州某文具店用4000元购进若干书包,很快售完,接着又用4500元购进第二批书包,已知第二批所购进书包的只数是第一批所购进书包的只数的1.5倍,且每只书包的进价比第一批的进价少5元,求第一批书包每只的进价是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON30°,点B1B2B3…和A1A2A3…分别在OMON上,且△A1B1A2、△A2B2A3、△A3B3A4、…分别为等边三角形,已知OA11,则△A2018B2018A2019的边长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有下列命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③算术平方根等于它本身的数是1;④如果点P3-2n1)到两坐标轴的距离相等,则n=1;⑤若a2=b2,则a=b⑥若=,则a=b.其中假命题的个数是(  )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D选在何处时,所用时间最短?
【特例分析】若n=2,则时间t= + ,当a为定值时,问题转化为:在BC上确定一点D,使得AD+ 的值最小.如图②,过点C做射线CM,使得∠BCM=30°.

(1)过点D作DE⊥CM,垂足为E,试说明:DE=
(2)【问题解决】请在图②中画出所用时间最短的登陆点D′,并说明理由.
(3)【模型运用】请你仿照“特例分析”中的相关步骤,解决图①中的问题(写出具体方案,如相关图形呈现、图形中角所满足的条件、作图的方法等).
(4)如图③,海面上一标志A到海岸BC的距离AB=300m,BC=300m.救生员在C点处发现标志A处有人求救,
立刻前去营救,若救生员在岸上跑的速度都是6m/s,在海中游泳的速度都是2m/s,求救生员从C点出发到
达A处的最短时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l过正方形ABCD的顶点B,点AC至直线l的距离分别为23,则此正方形的面积为(  )

A. 5 B. 6 C. 9 D. 13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y= (k>0,x>0)的图象经过点C,则k的值为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案