精英家教网 > 初中数学 > 题目详情

【题目】已知函数过点(-2-3)和点(16

1)求这个函数的解析式;

2)当在什么范围内时,函数值的增大而增大;

3)求这个函数的图像与轴的交点坐标.

【答案】1;(2;(3.

【解析】

1)待定系数法求函数的关系式,把点的坐标代入求出ab的值,即可写出关系式;

2)根据抛物线的增减性,当a<0时,在对称轴的左侧,yx的增大而增大,在对称轴的右侧,随的增大而减小,确定对称轴即可达成答案

3)求函数的图像与x轴的交点坐标,只需另y=0,求出相应的x的值即可

1)解:把点(-2-3)和点(16)代入得,

解方程组得:

所以这个函数的解析式是:.

2)解:∵二次函数的对称轴为

,开口向下

∴当时,函数值的增大而增大.

3 解:求二次函数的图像与轴的交点坐标,

即求方程的解

解方程得:

所以这个函数的图像与轴的交点坐标是:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙ORtABC的斜边AB相切于点D,与直角边AC相交于EF两点,连结DE,已知∠B=30°O的半径为12,弧DE的长度为

1)求证:DEBC

2)若AF=CE,求线段BC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,弦DE垂直平分半径OAC为垂足,弦DF与半径OB相交于点P,连接EFEO,若DE2,∠DPA45°.

1)求O的半径;

2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB6cmBC12cm,点P从点A出发沿AB1cm/s的速度向点B移动;同时,点Q从点B出发沿BC2cm/s的速度向点C移动.设运动时间为t.

1)当t2时,△DPQ的面积为 cm2

2)在运动过程中△DPQ的面积能否为26cm2?如果能,求出t的值,若不能,请说明理由;

3)运动过程中,当 APQD四点恰好在同一个圆上时,求t的值;

4)运动过程中,当以Q为圆心,QP为半径的圆,与矩形ABCD的边共有4个交点时,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分10)阅读下列材料:

1)关于x的方程x2-3x+1=0x≠0)方程两边同时乘以得:

2a3+b3=a+b)(a2-ab+b2);a3-b3=a-b)(a2+ab+b2).

根据以上材料,解答下列问题:

1x2-4x+1=0x≠0),则= ______ = ______ = ______

22x2-7x+2=0x≠0),求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋钮位置从0度到90度,燃气关闭时,燃气灶旋钮位置为0度,旋钮角度越大,燃气流量越大,燃气开到最大时,旋钮角度为90.为测试燃气灶旋钮在不同位置上的燃气用量,在相同条件下,选择在燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度度的范围是),记录相关数据得到下表:

旋钮角度(度)

20

50

70

80

90

所用燃气量(升)

73

67

83

97

115

1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量升与旋转角度度的变化规律?说明确定这种函数而不是其他函数的理由,并求出它的解析式;

2)当旋转角度为多少时,烧开一壶水所用燃气量最少?最少是多少?

3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋转角度,若该家庭现在每月的平均燃气用量为13立方米,求现在每月平均能比以前每月节省燃气多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学开展了手机伴我健康行主题活动。他们随即抽取部分学生进行使用手机的目的每周使用手机的时间的问卷调查,并绘制成如图①,②的统计图,已知查资料的人数是40人。

请你根据以上信息解答下列问题:

(1) 在扇形统计图中,“玩游戏”对应的百分比为___,圆心角度数是___度;

(2)补全条形统计图;

(3)该校共有学生2100,估计每周使用手机时间在2小时以上(不含2小时)的人数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yaxh2+ka0)的图象是抛物线,定义一种变换,先作这条抛物线关于原点对称的抛物线y′,再将得到的对称抛物线y′向上平移mm0)个单位,得到新的抛物线ym,我们称ym叫做二次函数yaxh2+ka0)的m阶变换.

1)已知:二次函数y2x+22+1,它的顶点关于原点的对称点为   ,这个抛物线的2阶变换的表达式为   

2)若二次函数M6阶变换的关系式为y6′=(x12+5

二次函数M的函数表达式为   

若二次函数M的顶点为点A,与x轴相交的两个交点中左侧交点为点B,在抛物线y6′=(x12+5上是否存在点P,使点P与直线AB的距离最短,若存在,求出此时点P的坐标.

3)抛物线y=﹣3x26x+1的顶点为点A,与y轴交于点B,该抛物线的m阶变换的顶点为点C.若△ABC是以AB为腰的等腰三角形,请直按写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有两条公路OMON相交成30°,沿公路OM方向离两条公路的交叉处O80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,距拖拉机中心50米的范围内均会受到噪音影响,已知有两台相距40米的拖拉机正沿ON方向行驶,它们的速度均为10/秒,则这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间为

A. 6B. 8C. 10D. 18

查看答案和解析>>

同步练习册答案