【题目】(1)填写下表,观察被开方数的小数点与算术平方根的小数点的移动规律:
0.0016 | 0.16 | 16 | 1600 | |
0.04 | 0.4 |
(2)根据你发现的规律填空:
①已知,则 .
②已知,,则是的 倍.
【答案】(1) 4,40 ;(2)①1.99;②10000
【解析】
(1)根据算术平方根的定义先求出每一个数的算术平方根,然后再根据小数点的变化进行解答;
(2)①根据(1)中的规律对小数点移动进行求解即可;
②根据(1)中的规律对小数点移动进行求解即可.
(1)∵0.042=0.0016,∴0.04;
同理:0.4,
4;
40
故答案为:4,40;
(2)①由表格可知,被开方数a 的小数点向右(或向左)每移动两位时,的小数点向右(或向左)移动1位,
根据此规律,可得1.99.
故答案为:1.99;
②由表格可知,被开方数a 的小数点向右(或向左)每移动两位时,的小数点向右(或向左)移动1位,已知0.345,34.5,则n是m的10000倍.
故答案为:10000.
科目:初中数学 来源: 题型:
【题目】(1)化简:[x(x2y2﹣xy)﹣2y(x2﹣x3y)]÷3x2y
(2)化简求值:(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2,其中y=1,x=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,且∠EAF=60°,BE=2cm,DF=3cm,试求平行四边形ABCD的周长及面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b>的解集是x<﹣2或0<x<1,其中正确的结论的序号是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.
(1)求一次函数与反比例函数的解析式;
(2)记两函数图象的另一个交点为E,求△CDE的面积;
(3)直接写出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,若分得的两个小三角形中一个三角形为等腰三角形,另一个三角形的三个内角与原来三角形的三个内角分别相等,则称这条线段叫做这个三角形的“等角分割线”.
例如,等腰直角三角形斜边上的高就是这个等腰直角三角形的一条“等角分割线”.
(1)如图1,在△ABC中,D是边BC上一点,若∠B=30°,∠BAD=∠C=40°,求证: AD为△ABC的“等角分割线”;
(2)如图2,△ABC中,∠C=90°,∠B=30°;
①画出△ABC的“等角分割线”,写出画法并说明理由;
②若BC=3,求出①中画出的“等角分割线”的长度.
(3)在△ABC中,∠A=24°,若△ABC存在“等角分割线”CD,直接写出所有符合要求的∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点是边上(端点除外)的一个动点,过点作直线.设交的平分线于点,交的外角平分线于点,连接、.那么当点运动到何处时,四边形是矩形?并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com