分析 (1)首先证明△ACD≌△ABE,得出∠1=∠3,再由∠BAC=90°,可得∠3+∠2=90°,结合FG⊥CD可得出∠3=∠CMF,∠GEM=∠GME,继而可得出结论.
(2)先大致观察三者的关系,过点B作AB的垂线,交GF的延长线于点N,利用(1)的结论可将AF转化为NF,BG转化为NG,从而在一条直线上得出三者的关系.
解答 (1)证明:∵等腰直角三角形ABC中,∠BAC=90°,
∴AC=AB,∠ACB=∠ABC=45°,
又∵AD=AE,∠CAD=∠BAE,
在△ACD与△ABE中,
$\left\{\begin{array}{l}{AC=AB}\\{∠CAD=∠BAE}\\{AD=AE}\end{array}\right.$,
∴△ACD≌△ABE(SAS),
∴∠1=∠3,
∵∠BAC=90°,
∴∠3+∠2=90°,∠1+∠4=90°,
∴∠4+∠3=90°
∵FG⊥CD,
∴∠CMF+∠4=90°,
∴∠3=∠CMF,
∴∠GEM=∠GME,
∴EG=MG,△EGM为等腰三角形.
(2)证明:过点B作AB的垂线,交GF的延长线于点N,如图:
∵BN⊥AB,∠ABC=45°,
∴∠FBN=45°=∠FBA.
∵FG⊥CD,
∴∠BFN=∠CFM=90°-∠DCB,
∵AF⊥BE,
∴∠BFA=90°-∠EBC,∠5+∠2=90°,
由(1)可得∠DCB=∠EBC,
∴∠BFN=∠BFA,
又∵BF=BF,
在△BFN与△BFA中,
$\left\{\begin{array}{l}{∠DCB=∠EBC}\\{BF=BF}\\{∠BFN=∠BFA}\end{array}\right.$,
∴△BFN≌△BFA(ASA),
∴NF=AF,∠N=∠5,
又∵∠GBN+∠2=90°,
∴∠GBN=∠5=∠N,
∴BG=NG,
又∵NG=NF+FG,
∴BG=AF+FG.
点评 本题考查全等三角形的判定及性质,难度较大,尤其是第二问的证明,要学会要判断三条线段之间的关系,一般都需要转化到同一条直线上进行,第二问另外还可以有如下解法,①设CD、BE的交点为N,连接AN(见下图).先证AF=BN,再证FG=NG,②过点C作AC的垂线,交AF的延长线于点H(见下图).先证AH=BE,再证FM=FH,同学们可以自己试一下.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com