精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,抛物线ymx22mx+m+4y轴交于点A03),与x轴交于点BC(点B在点C左侧).

1)求该抛物线的表达式及点BC的坐标;

2)抛物线的对称轴与x轴交于点D,若直线ykx+b经过点D和点E(﹣1,﹣2),求直线DE的表达式;

3)在(2)的条件下,已知点Pt0),过点P作垂直于x轴的直线交抛物线于点M,交直线DE于点N,若点M和点N中至少有一个点在x轴下方,直接写出t的取值范围.

【答案】1B(-1,0)C(3,0);(2y=x-1;(3

【解析】

试题(1)由抛物线y轴交于点A0,3),把A点坐标代入解析式可得出m的值,即求出抛物线的解析式,然后抛物线与轴交于点BC两点,即可求出BC两点的坐标;(2

2)由求出点D的坐标,将DE的点代入直线的解析式,即可求出直线DE的表达式;

3)根据图像即可直接写出的取值范围.

试题解析:解:(1抛物线y轴交于点A0,3),

∴m+4=3

∴m=-1

抛物线的表达式为

抛物线轴交于点BC

y=0,即

解得

B在点C左侧,

B的坐标为,点C的坐标为

2

抛物线的对称轴为直线

抛物线的对称轴与轴交于点D

D的坐标为(1,0)

直线经过点D(1,0)和点E(-1,-2)

解得

直线DE的表达式为y=x-1

3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.

(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;

(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015227日,在中央全面深化改革领导小组第十次会议上,审议通过了《中国足球改革总体方案》,体制改革、联赛改革、校园足球等成为改革的亮点.在联赛方面,作为国内最高水平的联赛﹣﹣中国足球超级联赛今年已经进入第12个年头,中超联赛已经引起了世界的关注.图9是某一年截止倒数第二轮比赛各队的积分统计图.

(1)根据图,请计算该年有_____支中超球队参赛;

(2)补全图一中的条形统计图;

(3)根据足球比赛规则,胜一场得3分,平一场得1分,负一场得0分,最后得分最高者为冠军.倒数第二轮比赛后积分位于前4名的分别是A49分,B49分,C48分,D45分.在最后一轮的比赛中,他们分别和第4名以后的球队进行比赛,已知在已经结束的一场比赛中,A队和对手打平.请用列表或者画树状图的方法,计算C队夺得冠军的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F

1求证:AEFDEB

2证明四边形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线与双曲线交于点A,过点AO的平行线交双曲线于点B,连接AB并延长与y轴交于点,则k的值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC沿角平分线BD所在直线翻折,顶点A恰好落在边BC的中点E处,AE=BD,那么tanABD=(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,反比例函数y=x0)的图象经过矩形OABC的对角线AC的中点M,分别与ABBC交于点DE,若BD=3OA=4,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出

(1)如图①,在ABC中,∠A=120°,AB=AC=5,则ABC的外接圆半径R的值为

问题探究

(2)如图②O的半径为13,弦AB=24,MAB的中点,P是⊙O上一动点,求PM的最大值.

问题解决

(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在线段ABAC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EFFP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).

图① 图② 图③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 在矩形ABCD中,AB3AD4,点PAB边上的动点(PAB不重合),将△BCP沿CP翻折,点B的对应点B1在矩形外,PB1ADECB1AD于点F

1)如图1,求证:△APE∽△DFC

2)如图1,如果EFPE,求BP的长;

3)如图2,连接BB′交AD于点QEQQF85,求tanPCB

查看答案和解析>>

同步练习册答案