【题目】已知射线AB∥射线CD,P为一动点,AE平分∠PAB,CE平分∠PCD,且AE与CE相交于点E.
(1)在图1中,当点P运动到线段AC上时,∠APC=180°.
①直接写出∠AEC的度数;②求证:∠AEC=∠EAB+∠ECD;
(2)当点P运动到图2的位置时,猜想∠AEC与∠APC之间的关系,并加以说明;
(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC与∠APC之间的关系,并加以证明。
【答案】(1))①∠AEC=90°②见解析;(2)∠AEC=∠APC, 理由见解析;(3)不成立,∠AEC=180∠APC ,理由见解析
【解析】
(1)①由平行线的性质可得出∠PAB+∠PCD=180°,进而可得出∠AEC的度数;
②在图1中,过E作EF∥AB,根据平行线的性质可得出∠AEF=∠EAB、∠CEF=∠ECD,进而即可证出∠AEC=∠AEF+∠CEF=∠EAB+∠ECD;
(2)猜想:∠AEC=∠APC,由角平分线的定义可得出∠EAB=∠PAB、∠ECD=∠PCD,由(1)可知∠AEC=∠EAB+∠ECD、∠APC=∠PAB+∠PCD,进而即可得出∠AEC=(∠PAB+∠PCD)=∠APC;
(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180°-∠APC,过P作PQ∥AB,由平行线的性质可得出∠PAB+∠APQ=180°、∠CPQ+∠PCD=180°,进而可得出∠PAB+∠PCD=360°-∠APC,再由角平分线的定义可得出∠EAB=∠PAB、∠ECD=∠PCD,结合(1)的结论即可证出∠AEC=180°- ∠APC.
(1)①∵AB∥CD,
∴∠PAB+∠PCD=180°,
∴∠AEC=90°;
②证明:在图1中,过E作EF∥AB,则∠AEF=∠EAB.
∵AB∥CD,
∴EF∥CD,
∴∠CEF=∠ECD.
∴∠AEC=∠AEF+∠CEF=∠EAB+∠ECD.
(2)猜想:∠AEC=∠APC,理由如下:
∵AE、CE分别平分∠PAB和∠PCD,
∴∠EAB=∠PAB,∠ECD=∠PCD.
由(1)知∠AEC=∠EAB+∠ECD,∠APC=∠PAB+∠PCD,
∴∠AEC=∠PAB+∠PCD= (∠PAB+∠PCD)= ∠APC.
(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180∠APC,
其证明过程是:
过P作PQ∥AB,则∠PAB+∠APQ=180°.
∵AB∥CD,
∴PQ∥CD,
∴∠CPQ+∠PCD=180.
∴∠PAB+∠APQ+∠CPQ+∠PCD=360°,即∠PAB+∠PCD=360°∠APC.
∵AE、CE分别平分∠PAB和∠PCD,
∴∠EAB=∠PAB,∠ECD=∠PCD.
由(1)知∠AEC=∠EAB+∠ECD,
∴∠AEC=∠PAB+∠PCD= (∠PAB+∠PCD)= 180°- ∠APC.
科目:初中数学 来源: 题型:
【题目】某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款.
某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.
(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;
(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,锐角△ABC内接于⊙O,若⊙O的半径为6,sinA=,求BC的长.
【答案】BC=8.
【解析】试题分析:通过作辅助线构成直角三角形,再利用三角函数知识进行求解.
试题解析:作⊙O的直径CD,连接BD,则CD=2×6=12.
∵
∴
∴
点睛:直径所对的圆周角是直角.
【题型】解答题
【结束】
22
【题目】如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个正方体的表面展开图,请回答下列问题:
(1)与面B、C相对的面分别是 ;
(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相对两个面所表示的代数式的和都相等,求E、F分别代表的代数式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中
①小明家与学校的距离1200米;
②小华乘坐公共汽车的速度是240米/分;
③小华乘坐公共汽车后7:50与小明相遇;
④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.其中正确的个数是( )
A. 1 个B. 2个
C. 3 个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数的图象交于点A(,n)和B.
(1)求k的值和点B的坐标;
(2)如果P是x轴上一点,且AP=AB,直接写出点P的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表给出了代数式﹣x2+bx+c与x的一些对应值:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
﹣x2+bx+c | … | 5 | n | c | 2 | ﹣3 | ﹣10 | … |
(1)根据表格中的数据,确定b,c,n的值;
(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若干个工人装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时间是第一个人的,则按改变的方式装卸,自始至终共需时间_____小时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生小明、小华为了解本校八年级学生每周上网的时间,各自进行了抽样调查.小明调查了八年级信息技术兴趣小组中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5h;小华从全体320名八年级学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2h.小明与小华整理各自样本数据,如表所示.
时间段(h/周) | 小明抽样人数 | 小华抽样人数 |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每组可含最低值,不含最高值)
请根据上述信息,回答下列问题:
(1)你认为哪位学生抽取的样本具有代表性?_____.
估计该校全体八年级学生平均每周上网时间为_____h;
(2)在具有代表性的样本中,中位数所在的时间段是_____h/周;
(3)专家建议每周上网2h以上(含2h)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体八年级学生中有多少名学生应适当减少上网的时间?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com