精英家教网 > 初中数学 > 题目详情

【题目】分解因式:(2a+1)2﹣a2=

【答案】(3a+1)(a+1)
【解析】解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),
所以答案是:(3a+1)(a+1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】探索与研究:
方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以
∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图示写出证明勾股定理的过程;
方法2:如图(b),是任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点P位于x轴下方,距离x轴5个单位,位于y轴右方,距离y轴3个单位,那么P点的坐标是( )

A.(5,-3) B.(3,-5) C.(-5,3) D.(-3,5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面内三条直线abc,若abbc,则a _______ c(填位置关系)。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.

(1)若点D在线段BC上,如图1.

①依题意补全图1;

②判断BC与CG的数量关系与位置关系,并加以证明;

(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE的长为_____,并简述求GE长的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x﹣2y=3,则代数式6﹣2x+4y的值为(
A.0
B.﹣1
C.﹣3
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,对角线AC⊥BD,且AC=8BD=4,各边中点分别为A1B1C1D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2B2C2D2,顺次连接得到四边形A2B2C2D2,依此类推,这样得到四边形AnBnCnDn,则四边形AnBnCnDn的面积为( )

A. B. C. D. 不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCO的边OAOC在坐标轴上,点B坐标为(33).将正方形ABCO绕点A顺时针旋转角度αα90°),得到正方形ADEFED交线段OC于点GED的延长线交线段BC于点P,连APAG

1)求证:△AOG≌△ADG

2)求∠PAG的度数;并判断线段OGPGBP之间的数量关系,说明理由;

3)当∠1=∠2时,求直线PE的解析式;

4)在(3)的条件下,直线PE上是否存在点M,使以MAG为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.

(1)求二次函数的解析式;

(2)点P在x轴正半轴上,且PA=PC,求OP的长;

(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.

①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;

②若⊙M的半径为,求点M的坐标.

查看答案和解析>>

同步练习册答案