精英家教网 > 初中数学 > 题目详情
心理学家通过实验发现:初中学生听讲的注意力随时间变化,讲课开始时,学生注意力逐渐增强,中间有一段平稳状态,随后开始分散.学生注意力指标数y随时间表t(分钟)变化的函数图象如下.当0≤t≤10时,图像是抛物线的一部分,当10≤t≤20时和20≤t≤40时,图像是线段。
(1)当0≤t≤10时,求注意力指标数y与时间t的函数关系式;
(2)一道数学探究题需要讲解24分钟,问老师能否经过恰当安排,使学生在探究这道题时,注意力指标数不低于45?请通过计算说明.
(1);(2)能,理由见解析.

试题分析:(1)直接利用待定系数法求二次函数解析式进而得出答案;
(2)首先利用待定系数法求出一次函数解析式,进而令y=45,有45=-x+95,求出x的值,进而得出讲课后注意力不低于45的时间.
(1)当0≤t≤10时,设抛物线的函数关系式为y=ax2+bx+c.由于它的图象经过点(0,25),(4,45),(10,60),
所以
解得:
所以
(2)当20≤x≤40时,设函数解析式为:y=kx+d,将(20,60),(40,25)代入得:

解得:

令y=45,有45=-x+95,
解得:x=
即讲课后第分钟时注意力不低于45,
当0≤x≤10时,令y=45,有45=-x2+6x+25,
解得:x1=4,x2=20(舍去),
即讲课后第4分钟时,注意力不低于45,
所以讲课后注意力不低于45的时间有(分钟)>24(分钟),
所以老师可以经过适当的安排,使学生在探究这道数学题时,注意力指数不低于45.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1)。
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,△ABC的边AB在x轴上,∠ABC=90°,AB=BC,OA=1,OB=4,抛物线经过A、C两点.
(1)求抛物线的解析式及其顶点坐标;
(2)如图①,点P是抛物线上位于x轴下方的一点,点Q与点P关于抛物线的对称轴对称,过点P、Q分别向x轴作垂线,垂足为点D、E,记矩形DPQE的周长为d,求d的最大值,并求出使d最大值时点P的坐标;
(3)如图②,点M是抛物线上位于直线AC下方的一点,过点M作MF⊥AC于点F,连接MC,作MN∥BC交直线AC于点N,若MN将△MFC的面积分成2:3两部分,请确定M点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是(    )
A.           B.
C.             D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中,正确的是(  )
A.abc<0
B.a+c<b
C.b>2a
D.4a>2b﹣c

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:M、N两点关于y轴对称,且点M在双曲线上,点N在直线上,设点M的坐标为,则二次函数(      )
A.有最大值,最大值为B.有最大值,最大值为
C.有最小值,最小值为D.有最小值,最小值为

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=x2-2x+6的最小值是________.

查看答案和解析>>

同步练习册答案