试题分析:(1)由于抛物线的解析式中只有两个待定系数,因此只需将A、C两点的坐标代入抛物线中即可求出二次函数的解析式.
(2)根据A、C的坐标,易求得直线AC的解析式,可设D点的横坐标,根据直线AC的解析式可表示出E点的纵坐标,即可得到DE的长,以DE为底,D点横坐标为高即可得到△CDE的面积,从而得到关于△CDE的面积与D点横坐标的函数关系式,根据所得函数的性质即可求出△CDE的面积最大值及对应的D点坐标.
(3)根据抛物线的解析式,可求出B点的坐标,进而能得到直线BC的解析式,设出点P的横坐标,根据直线BC的解析式表示出P点的纵坐标,然后利用坐标系两点间的距离公式分别表示出△ACP三边的长,从而根据:①AP=CP、②AC=AP、③CP=AC,三种不同等量关系求出符合条件的P点坐标.
(1)由于抛物线经过A(2,0),C(0,-1),
则有:
,解得
;
∴抛物线的解析式为:y=
x
2-
x-1.
(2)∵A(2,0),C(0,-1),
∴直线AC:y=
x-1;
设D(x,0),则E(x,
x-1),
故DE=0-(
x-1)=1-
x;
∴△DCE的面积:S=
DE×|x
D|=
×(1-
x)×x=-
x
2+
x=-
(x-1)
2+
,
因此当x=1,
即D(1,0)时,△DCE的面积最大,且最大值为
.
(3)由(1)的抛物线解析式易知:B(-1,0),
可求得直线BC的解析式为:y=-x-1;
设P(x,-x-1),因为A(2,0),C(0,-1),则有:
AP
2=(x-2)
2+(-x-1)
2=2x
2-2x+5,
AC
2=5,CP
2=x
2+(-x-1+1)
2=2x
2;
当AP=CP时,AP
2=CP
2,有:
2x
2-2x+5=2x
2,解得x=2.5,
∴P
1(2.5,-3.5);
②当AP=AC时,AP
2=AC
2,有:
2x
2-2x+5=5,解得x=0(舍去),x=1,
∴P
2(1,-2);
③当CP=AC时,CP
2=AC
2,有:
2x
2=5,解得x=±
,
∴P
3(
,-
-1),P
4(-
,
-1);
综上所述,存在符合条件的P点,且P点坐标为:P
1(2.5,-3.5)、P
2(1,-2)、P
3(
,-
-1),P
4(-
,
-1).