【题目】.2015年5月6日凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的环邛海空中列车,这将是国内第一条空中列车,据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.
(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元.
(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600 m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200 m3,每辆小车每天运送沙石120 m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,则施工方有几种租车方案?哪种租车方案费用最低?最低费用是多少?
【答案】(1)每千米“空列”轨道的陆地建设费用为1.4亿元,每千米“空列”轨道的水上建设费用为1.6亿元.(2)方案一的费用最低,最低费用是8500元.
【解析】试题分析:(1)首先根据题意,设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,然后根据“空列”项目总共需要60.8亿元,以及每千米水上建设费用比陆地建设费用多0.2亿元,列出二元一次方程组,再解方程组,求出每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元即可.
(2)首先根据题意,设每天租m辆大车,则需要租10﹣m辆小车,然后根据每天至少需要运送沙石1600m3,以及每天租车的总费用不超过9300元,列出一元一次不等式组,判断出施工方有几种租车方案;最后分别求出每种租车方案的费用是多少,判断出哪种租车方案费用最低,最低费用是多少即可.
试题解析:(1)设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,
则: ,解得: .
所以每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.
答:每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.
(2)设每天租m辆大车,则需要租10﹣m辆小车,
则:,∴,
∴施工方有3种租车方案:①租5辆大车和5辆小车;②租6辆大车和4辆小车;③租7辆大车和3辆小车;
①租5辆大车和5辆小车时,租车费用为:1000×5+700×5=5000+3500=8500(元)
②租6辆大车和4辆小车时,租车费用为:1000×6+700×4=6000+2800=8800(元)
③租7辆大车和3辆小车时,租车费用为:1000×7+700×3=7000+2100=9100(元)
∵8500<8800<9100,
∴租5辆大车和5辆小车时,租车费用最低,最低费用是8500元.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为( )
A.6 B.8 C.9 D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件:
①掷一次骰子,向上一面的点数是3;
②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;
③13个人中至少有两个人的生日是在同一个月份;
④射击运动员射击一次,命中靶心;
⑤水中捞月;
⑥冬去春来.
其中是必然事件的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图A、B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为90.
(1)请写出与AB两点距离相等的M点对应的数;
(2)现在有一只电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道对应的数是多少吗?
(3)若当电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向左运动,经过多长的时间两只电子蚂蚁在数轴上相距30个单位长度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列变形中,不正确的是( )
A.a+(b+c﹣d)=a+b+c﹣d
B.a﹣(b﹣c+d)=a﹣b+c﹣d
C.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d
D.a+b﹣(﹣c﹣d)=a+b+c+d
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com