【题目】平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.
(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;
(2)当四边形ABCD是 形时,四边形OBEC是正方形.
【答案】(1)证明见解析;(2)正方
【解析】(1)根据矩形的性质:两条对角线相等且互相平分,即可得到结论;(2)根据正方形的性质:对角线相等且互相垂直平分,即可得到结论.
解:(1)四边形OBEC是菱形.理由如下:
∵BE∥OC,CE∥OB,
∴四边形OBEC为平行四边形.
又∵四边形ABCD是矩形,
∴OC=AC; OB=BD;AC=BD
∴OC=OB,
∴平行四边形OBEC为菱形;
(2) 四边形ABCD是正方形时,四边形OBEC是正方形. 理由如下:
四边形OBEC是菱形.
∵BE∥OC,CE∥OB,
∴四边形OBEC为平行四边形.
又∵四边形ABCD是正方形,
∴OC=AC; OB=BD;AC=BD且AC⊥BD
∴OC=OB,∠BOC=90,
∴平行四边形OBEC为正方形;
即:当四边形ABCD是正方形时,四边形OBEC是正方形.
科目:初中数学 来源: 题型:
【题目】如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.
(1)如图①,当α=90°时,求AE′,BF′的长;
(2)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;
(3)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线EF分别平行四边形ABCD边AB、 CD于点E、F,将图形沿直线EF对折,点A、D分别落在点、A',D'处,
(1) 如图1,当点A’与点C重合时,连接AF,求证:四边形AECF是菱形:
(2)若∠A=60°,AD=4, AB=8,
①如图2.当点A’与BC边的中点G重合时,求AE的长;
②如图3.当点A’落在BC边上任意点时,设点P为直线EF上的动点,请直接写出PC+PA’的最小值 ;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线y=﹣2x+3与x轴交于点A,与直线y=x交于点B.
(1)点A坐标为 ,∠AOB= ;
(2)求S△OAB的值;
(3)动点E从原点O出发,以每秒1个单位长度的速度沿着O→A的路线向终点A匀速运动,过点E作EF⊥x轴交直线y=x于点F,再以EF为边向右作正方形EFGH.设运动t秒时,正方形EFGH与△OAB重叠部分的面积为S.求:S与t之间的函数关系式,并写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=60°.在△ABC的外侧作直线AP,点C关于直线AP的对称点为D,连接AD,BD.
(1)依据题意补全图形;
(2)当∠PAC等于多少度时,AD∥BC?请说明理由;
(3)若BD交直线AP于点E,连接CE,求∠CED的度数;
(4)探索:线段CE,AE和BE之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.
解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知 )
∴ (同角的补角相等)①
∴ (内错角相等,两直线平行)②
∴∠ADE=∠3( )③
∵∠3=∠B( )④
∴ (等量代换)⑤
∴DE∥BC( )⑥
∴∠AED=∠C( )⑦
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,以为圆心,任意长为半径画弧分别交、于点和,再分别以、为圆心,大于的长为半径画弧,两弧交于点,连结并延长交于点,则下列说法中正确的个数是( )
①是的平分线;②;③;④
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com