【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到对应点C,D,连接AC,BD.
(1)求出点C,D的坐标;
(2)设y轴上一点P(0,m),m为整数,使关于x,y的二元一次方程组有正整数解,求点P的坐标;
(3)在(2)的条件下,若Q点在线段CD上,横坐标为n,△PBQ的面积S△PBQ的值不小于0.6且不大于4,求n的取值范围.
【答案】(1)C(0,2),D(4,2);(2)P(0,﹣4);(3)2.5≤n≤4.
【解析】
(1)根据平移规律,直接得出点C,D的坐标;
(2)求出x=.可得m的取值为﹣4,则P点坐标可求出;
(3)过点P作x轴的平行线,过点B作y轴的平行线交CD于点F,两平行直线交于点E,求出S四边形PEFC=3×6=18.可用n表示出△PBQ的面积,解不等式组可得出答案.
解:(1)∵点A,B的坐标分别为(﹣1,0),(3,0),将点A,B分别向上平移2个单位,再向右平移1个单位得到对应点C,D,
∴C(0,2),D(4,2);
(2),
∴①+②得:
x=.
∵x为正整数,
∴m<﹣3.
∴m=﹣4时,方程组的正整数解是,
∴P(0,﹣4);
(3)过点P作x轴的平行线,过点B作y轴的平行线交CD于点F,两平行直线交于点E,
∵S四边形PEFC=3×6=18.
S四边形PEFC=+×3×4+×2×(3﹣n).
∴3n+S△PBQ+6+3﹣n=18.
∴S△PBQ=9﹣2n.
∵S△PBQ的值不小于0.6且不大于4,
∴0.6≤9﹣2n≤4.
解得2.5≤n≤4.2.
又∵Q点在线段CD上,
∴0≤n≤4,
∴n的取值范围是2.5≤n≤4.
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+b的图象交反比例函数 图象于点A,B,交x轴于点C.
(1)求m的取值范围;
(2)若点A的坐标是(1,﹣4),且 ,求m的值和一次函数的解析式;
(3)在(2)的情况下,请直接写出不等式 的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,则点P(x,y)落在直线y=﹣x+5上的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了更好治理西太湖水质,保护环境,市治污公司决定购买10 台污水处理设备,现有A、B两种型号的设备,其中每台的价格,月处理污水量如下表:
经调查:购买-台A型设备比购买一-台B型设备多2万元,购买2台A型设备比购买4台B型设备少4万元.
(1)求a、b的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过47万元,并且该月要求处理西太湖的污水量不低于1860 吨,则有哪几种购买方案?请指出最省钱的一种购买方案,并指出相应的费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F.
(1)求证:△ADC≌△BDF;
(2)求证:BF=2AE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
将图1中的三角板绕点O以每秒的速度沿逆时针方向旋转一周如图2,经过t秒后,ON落在OC边上,则______秒直接写结果.
如图2,三角板继续绕点O以每秒的速度沿逆时针方向旋转到起点OA上同时射线OC也绕O点以每秒的速度沿逆时针方向旋转一周,
当OC转动9秒时,求的度数.
运动多少秒时,?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).
(1)初步尝试
如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;
(2)类比发现
如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;
(3)深入探究
如图3,若AD=3AB,探究得: 的值为常数t,则t= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,△A1B1C1是△ABC向右平移四个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).
(1)请画出△ABC,并写出点A、B、C的坐标;
(2)求出△AOA1的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com