【题目】电动自行车已成为市民日常出行的首选工具。据某市品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月销售216辆.
(1)求该品牌电动车销售量的月平均增长率;
(2)若该品牌电动自行车的进价为2300元,售价2800元,则该经销商1月至3月共盈利多少元?
【答案】(1)20%;(2)273000.
【解析】
试题(1)设该品牌电动车销售量的月平均增长率为x,2月份该品牌电动车销售量为150(1+x),则3月份该品牌电动车销售量为150(1+x) (1+x) =150(1+x)2. 据此列出方程求解.
(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.
试题解析:解:(1)设该品牌电动车销售量的月平均增长率为x,根据题意得
150(1+x)2=216,
解得x1=0.2,x2=-2.2(舍去).
答:该品牌电动车销售量的月平均增长率为20%.
(2)由(1)得该品牌电动车销售量的月平均增长率为20%,
∴2月份的销售量为150×(1+20%)=180.
∴则1-3月份的销售总量为150+180+216=546(辆)
∴(元)
答:该经销商1月至3月共盈利273000元.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由于检修部分生产设备,生产能力下降,某工厂现在比原计划平均每天少生产30台机器,现在生产600台机器所需时间与原计划生产900台机器所需时间相同.
问现在平均每天生产多少台机器.
(1)设现在平均每天生产台机器,则用含的式子表示;
原计划平均每天生产______台机器,现在生产600台机器所需时间为______天,原计划生产900台机器所需时间为______天;
(2)列出方程,完成本题解答.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知命题:①两边和第三边上的中线对应相等的两个三角形全等;②腰长和面积对应相等的两个等腰三角形全等,则下列判断正确的是( )
A.①,②都是真命题B.①是真命题,②是假命题
C.①是假命题,②是真命题D.①,②都是假命题
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,点O是AB边上的动点,以O为圆心,OB为半径的⊙O与边BC的另一交点为D,过点D作AB的垂线,交于点E,连结BE、AE.
(1)当AE∥BC(如图(1))时,求⊙O的半径;
(2)设BO=x,AE=y,求y关于x的函数关系式;
(3)若以A为圆心的⊙A与⊙O有公共点D、E,当恰好也过点C时,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
云阳县多集合生态农业有限公司在2018年种植玉米的平均亩产量为0. 75吨,该公司总结了种植玉米的经验,2019年该公司种植玉米的情况是:种植面积比2018年减少了10%、平均亩产量比2018年增加了0. 2吨,总产量比2018年增加了8. 4吨.
(1)求2018年该公司种植玉米的面积;
(2)若2019年该公司种植玉米的人数比2018年少了12人,人均种植面积比2018年增加了17%,求2019年该公司种植玉米的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。
(1)求文具袋和圆规的单价。
(2)学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:
方案一:购买一个文具袋还送1个圆规。
方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.
①设购买面规m个,则选择方案一的总费用为______,选择方案二的总费用为______.
②若学校购买圆规100个,则选择哪种方案更合算?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴相交于P,且使OP=2OA, 求ΔABP的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com