精英家教网 > 初中数学 > 题目详情
13.一个不透明的口袋中有3个完全相同的小球,分别标有数字1,2,3,随机摸出一个小球然后放回,再随机摸出一个小球,求两次摸出的小球数字之积等于3的概率.

分析 列举出所有情况,看两次取出的小球的标号之积是3的情况数占总情况数的多少即可.

解答 解:树状图如下:

共9种情况,两次取出的小球的标号之积是3的情况数有2种,
所以两次取出的小球的标号之积是3的概率为$\frac{2}{9}$.

点评 本题考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比;得到两次取出的小球的标号之积是3的情况数是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为(  )
A.4.73×1010B.47.3×1010C.4.73×109D.47.3×109

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,AB∥CD,AB=BC,∠A=∠1,求证:BE=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为(  )
A.120°B.130°C.140°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列选项中,函数y=$\frac{4}{|x|}$对应的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简,再求值:(1-$\frac{1}{x+1}$)÷$\frac{x}{{x}^{2}-1}$,其中x=$\sqrt{3}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)如图①,P为△ABC的边AB上一点(P不与点A、点B重合),连接PC,如果△CBP∽△ABC,那么就称P为△ABC的边AB上的相似点.
画法初探
①如图②,在△ABC中,∠ACB>90°,画出△ABC的边AB上的相似点P(画图工具不限,保留画图痕迹或有必要的说明);

辩证思考
②是不是所有的三角形都存在它的边上的相似点?如果是,请说明理由;如果不是,请找出一个不存在边上相似点的三角形;
特例分析
③已知P为△ABC的边AB上的相似点,连接PC,若△ACP∽△ABC,则△ABC的形状是直角三角形;
④如图③,在△ABC中,AB=AC,∠A=36°,P是边AB上的相似点,求$\frac{BP}{AP}$的值.
(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的点(P不与点A、点B重合),作PQ⊥CD,垂足为Q.如果矩形ADQP∽矩形ABCD,那么就称PQ为矩形ABCD的边AB、CD上的相似线.
①类比(1)中的“画法初探”,可以提出问题:对于如图④的矩形ABCD,在不限制画图工具的前提下,如何画出它的边AB、CD上的相似线PQ呢?
你的解答是:在距离A点$\frac{{a}^{2}}{b}$处取点P,作PQ⊥CD,垂足为Q(只需描述PQ的画法,不需在图上画出PQ).
②请继续类比(1)中的“辩证思考”、“特例分析”两个栏目对矩形的相似线进行研究,要求每个栏目提出一个问题并解决.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.
(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:$\frac{DE}{CF}$=$\frac{AD}{CD}$;
(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得$\frac{DE}{CF}$=$\frac{AD}{CD}$成立?并证明你的结论;
(3)如图③,若BA=BC=2,DA=DC=$\sqrt{5}$,∠BAD=90°,DE⊥CF,试求$\frac{DE}{CF}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知△ABC是边长为10cm的等边三角形,一动点D从A出发沿自A向C方向以每秒2cm的速度移动,另一动点E同时从C出发沿自C向B方向以相同速度移动,当点D运动到点C时停止,同时点E也停止运动,连接AE、BD,相交于点F.
(1)当D、E点移动到如图所示位置时,小明感觉线段BD与线段AE的长度相同,你认同AE=BD的结论吗?请给出你的证明;
(2)在D、E点移动的过程中,小亮测量得到BD和AE所在直线的夹角的大小一直没变,你知道这个夹角为多少度吗?请给出详细的求解过程(注意:两条直线相交,所成的小于或等于90°的角称为夹角).

查看答案和解析>>

同步练习册答案