【题目】已知如图,矩形ABCD的周长为64,AB=12,对角线AC的垂直平分线分别交AD、BC于E、F,连接AF、CE、EF,且EF与AC相交于点O.
(1)求证:四边形AECF是菱形;
(2)求S△ABF与S△AEF的比值.
【答案】(1)证明见解析;(2)8:17.
【解析】
(1)根据SSS证明△AOE≌△COF,根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(2)由(1)知S△AEF=S△ACF,再分别求得S△ABF与S△AEF的面积即可得到其比值.
(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠OAE=∠OCF.
∵EF垂直平分AC,
∴AO=CO,∠AOE=∠COF=90°,
∴△AOE≌△COF(ASA),
∴OE=OF,
∴四边形AFEC是平行四边形,
又∵EF⊥AC,
∴四边形AFEC是菱形;
(2)∵△AOE≌△COF,
∴S△AEF=S△ACF
∵S△ABF=3BF,S△AEF=3FC,
∴S△ABF:S△AEF=BF:FC.
∵矩形ABCD的周长为64,AB=12,
∴BC=20,
设FC=x,则AF=x,BF=20﹣x
在Rt△ABF中,由勾股定理
122+(20﹣x)2=x2
解得:x,
BF,
∴S△ABF:S△AEF=BF:FC=8:17.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点、和,垂直于轴,交抛物线于点,垂直于轴,垂足为,直线是该抛物线的对称轴,点是抛物线的顶点.
(1)求出该二次函数的表达式及点的坐标;
(2)若沿轴向右平移,使其直角边与对称轴重合,再沿对称轴向上平移到点与点重合,得到,求此时与矩形重叠部分图形的面积;
(3)若沿轴向右平移个单位长度()得到,与重叠部分图形的面积记为,求与之间的函数表达式,并写出自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图,隧道的截面由抛物线和矩形构成,,隧道的最高点P位于AB的中点的正上方,且与AB的距离为4m.
建立如图所示的坐标系,求图中抛物线的解析式;
若隧道为单向通行,一辆高4米、宽3米的火车能否从隧道内通过?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于M、N,连按EN、EF,有以下结论:
①△ABM∽△NEM;②△AEN是等腰直角三角形;③当AE=AF时,;④BE+DF=EF;⑤若点F是DC的中点,则CECB.
其中正确的个数是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年3月,我市某中学举行了“爱我中国朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:
(1)参加朗诵比赛的学生共有 人,并把条形统计图补充完整;
(2)扇形统计图中,m= ,n= ;C等级对应扇形有圆心角为 度;
(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=或t=.其中正确的结论有( )
A. ①②③④B. ①②④
C. ①②D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过,及原点,顶点为.
(1)求抛物线的函数解析式;
(2)设点在抛物线上,点在抛物线的对称轴上,且以、、,为顶点,为边的四边形是平行四边形,求点的坐标;
(3)是抛物线上第一象限内的动点,过点作轴,垂足为.是否存在这样的点,使得以,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com