精英家教网 > 初中数学 > 题目详情

【题目】公交总站(A点)与B、C两个站点的位置如图所示,已知AC=6km,∠B=30°,∠C=15°,求B站点离公交总站的距离即AB的长(结果保留根号).

【答案】(3﹣3 )km

【解析】

CCD垂直于AB,交BA延长线于点D,由∠B与∠ACB的度数,利用外角性质求出∠CAD的度数,在直角三角形ACD中,利用勾股定理求出CDAD的长,在直角三角形BCD中,利用勾股定理求出BD的长,由BD-AD求出AB的长即可.

过点CCDAB,垂足为点D

∵∠B=30°,∠ACB=15°,

∴∠CAD=45°,

RtACD中,∠ADC=90°,∠CAD=45°,AC=6

CD=AD=ACcos45°=3km

RtBCD中,∠CDB=90°,∠B=30°,CD=3km

BD==3km

AB=(3-3)km

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,-2).

(1)求一次函数与反比例函数的解析式;

(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年(1)班的体育课上,小明、小强和小华三人在学习训练足球,足球从一人传到另一人就记为踢一次.

(1)如果从小强开始踢,经过两次踢球后,足球踢到了小明处的概率是多少?请用数状图或列表法说明.

(2)如果踢三次,球踢到了小明处的可能性最小,应从谁开始踢?(直接写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DEF分别是ABACBC的中点.当△ABC满足____条件时,四边形DAEF是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+4x-

(1)用配方法把该函数解析式化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;

(2)求函数图象与x轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴交于点C(0,4).

(1)求直线BC与抛物线的解析式;

(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,当 MN的值最大时,求△BMN的周长.

(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=4S2,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解下列方程,其中应在方程左右两边同时加上4的是(  )

A. x22x5 B. x2+4x5 C. 2x24x5 D. 4x2+4x5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于BC两点.

(1)求yx之间的函数关系式;

(2)直接写出当x>0时,不等式x+b的解集;

(3)若点Px轴上,连接APABC的面积分成1:3两部分,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F

1ABAC的大小有什么关系?请说明理由;

2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.

查看答案和解析>>

同步练习册答案